目录
理论
工具
方法实现
代码获取
理论
EEGNet作为一个比较成熟的框架,在BCI众多任务中,表现出不俗的性能。EEGNet 的主要特点包括:1)框架相对比较简单紧凑 2)适合许多的BCI脑电分析任务 3)使用两种卷积 Depth-wise convolution 和 separable convolution 实现普适特征的提取。
工具
Pytorch
P300 visual-evoked potentials数据集
error-related negativity responses (ERN) 数据集
movement-related cortical potentials (MRCP) 数据集
sensory motor rhythms (SMR) 数据集
方法实现
EEGNet模型定义
class EEGNet(nn.Module):
def __init__(self):
super(EEGNet, self).__init__()
self.T = 120
# Layer 1
self.conv1 = nn.Conv2d(1, 16, (1, 64), padding = 0)
self.batchnorm1 = nn.BatchNorm2d(16, False)
# Layer 2
self.padding1 = nn.ZeroPad2d((16, 17, 0, 1))
self.conv2 = nn.Conv2d(1, 4, (2, 32))
self.batchnorm2 = nn.BatchNorm2d(4, False)
self.pooling2 = nn.MaxPool2d(2, 4)
# Layer 3
self.padding2 = nn.ZeroPad2d((2, 1, 4, 3))
self.conv3 = nn.Conv2d(4, 4, (8, 4))
self.batchnorm3 = nn.BatchNorm2d(4, False)
self.pooling3 = nn.MaxPool2d((2, 4))
# FC Layer
# NOTE: This dimension will depend on the number of timestamps per sample in your data.
# I have 120 timepoints.
self.fc1 = nn.Linear(4*2*7, 1)
def forward(self, x):
# Layer 1
x = F.elu(self.conv1(x))
x = self.batchnorm1(x)
x = F.dropout(x, 0.25)
x = x.permute(0, 3, 1, 2)
# Layer 2
x = self.padding1(x)
x = F.elu(self.conv2(x))
x = self.batchnorm2(x)
x = F.dropout(x, 0.25)
x = self.pooling2(x)
# Layer 3
x = self.padding2(x)
x = F.elu(self.conv3(x))
x = self.batchnorm3(x)
x = F.dropout(x, 0.25)
x = self.pooling3(x)
# FC Layer
x = x.view(-1, 4*2*7)
x = F.sigmoid(self.fc1(x))
return x
net = EEGNet().cuda(0)
print net.forward(Variable(torch.Tensor(np.random.rand(1, 1, 120, 64)).cuda(0)))
criterion = nn.BCELoss()
optimizer = optim.Adam(net.parameters())
评估模型分类的相关指标
def evaluate(model, X, Y, params = ["acc"]):
results = []
batch_size = 100
predicted = []
for i in range(len(X)/batch_size):
s = i*batch_size
e = i*batch_size+batch_size
inputs = Variable(torch.from_numpy(X[s:e]).cuda(0))
pred = model(inputs)
predicted.append(pred.data.cpu().numpy())
inputs = Variable(torch.from_numpy(X).cuda(0))
predicted = model(inputs)
predicted = predicted.data.cpu().numpy()
for param in params:
if param == 'acc':
results.append(accuracy_score(Y, np.round(predicted)))
if param == "auc":
results.append(roc_auc_score(Y, predicted))
if param == "recall":
results.append(recall_score(Y, np.round(predicted)))
if param == "precision":
results.append(precision_score(Y, np.round(predicted)))
if param == "fmeasure":
precision = precision_score(Y, np.round(predicted))
recall = recall_score(Y, np.round(predicted))
results.append(2*precision*recall/ (precision+recall))
return results
模型的训练和测试
batch_size = 32
for epoch in range(10): # loop over the dataset multiple times
print "\nEpoch ", epoch
running_loss = 0.0
for i in range(len(X_train)/batch_size-1):
s = i*batch_size
e = i*batch_size+batch_size
inputs = torch.from_numpy(X_train[s:e])
labels = torch.FloatTensor(np.array([y_train[s:e]]).T*1.0)
# wrap them in Variable
inputs, labels = Variable(inputs.cuda(0)), Variable(labels.cuda(0))
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
# Validation accuracy
params = ["acc", "auc", "fmeasure"]
print params
print "Training Loss ", running_loss
print "Train - ", evaluate(net, X_train, y_train, params)
print "Validation - ", evaluate(net, X_val, y_val, params)
print "Test - ", evaluate(net, X_test, y_test, params)
模型提取部分特征的可视化
代码获取
信号处理-使用EEGNet进行BCI脑电信号的分类https://download.csdn.net/download/YINTENAXIONGNAIER/89025247