HTTP/2、HTTP/3对HTTP/1.1的性能改进和优化

news2024/12/23 20:49:38

HTTP/1.1 相比 HTTP/1.0 提高了什么性能?

性能上的改进:

  • 使用长连接的方式改善了 HTTP/1.0 短连接造成的性能开销。

  • 支持管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。

性能瓶颈:

  • 请求 / 响应头部(Header)未经压缩就发送,首部信息越多延迟越大。只能压缩 Body 的部分;

  • 发送冗长的首部。每次互相发送相同的首部造成的浪费较多;

  • 服务器是按请求的顺序响应的,如果服务器响应慢,会招致客户端一直请求不到数据,也就是队头阻塞

  • 没有请求优先级控制;

  • 请求只能从客户端开始,服务器只能被动响应。

HTTP/2 做了什么优化?

HTTP/2 协议是基于 HTTPS 的,所以 HTTP/2 的安全性也是有保障的。

那 HTTP/2 相比 HTTP/1.1 性能上的改进:

头部压缩

  • HTTP/2 会压缩头(Header)如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重复的部分。这就是所谓的 HPACK 算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。

二进制格式

  • HTTP/2 不再像 HTTP/1.1 里的纯文本形式的报文,而是全面采用二进制格式,因为计算机只懂二进制,那收到报文后,无需再将明文报文转成二进制,而是直接解析二进制报文,这增加了数据传输的效率

并发传输

  • HTTP/2 就很牛逼了,引出了 Stream 概念,多个 Stream 复用在一条 TCP 连接来解决队头阻塞问题,

  • 从上图可以看到,1 个 TCP 连接包含多个 Stream,Stream 里可以包含 1 个或多个 Message,Message 对应 HTTP/1 中的请求或响应,由 HTTP 头部和包体构成。Message 里包含一条或者多个 Frame,Frame 是 HTTP/2 最小单位,以二进制压缩格式存放 HTTP/1 中的内容(头部和包体)。

  • 针对不同的 HTTP 请求用独一无二的 Stream ID 来区分,接收端可以通过 Stream ID 有序组装成 HTTP 消息,不同 Stream 的帧是可以乱序发送的,因此可以并发不同的 Stream ,也就是 HTTP/2 可以并行交错地发送请求和响应

    比如下图,服务端并行交错地发送了两个响应: Stream 1 和 Stream 3,这两个 Stream 都是跑在一个 TCP 连接上,客户端收到后,会根据相同的 Stream ID 有序组装成 HTTP 消息。

服务器主动推送资源

  • 服务端不再是被动地响应,可以主动向客户端发送消息。客户端和服务器双方都可以建立 Stream, Stream ID 也是有区别的,客户端建立的 Stream 必须是奇数号,而服务器建立的 Stream 必须是偶数号。

HTTP/2 有什么缺陷?

HTTP/2 还是存在“队头阻塞”的问题,只不过问题不是在 HTTP 这一层面,而是在 TCP 这一层。

        HTTP/2 是基于 TCP 协议来传输数据的,TCP 是字节流协议,TCP 层必须保证收到的字节数据是完整且连续的,这样内核才会将缓冲区里的数据返回给 HTTP 应用,那么当「前 1 个字节数据」没有到达时,后收到的字节数据只能存放在内核缓冲区里,只有等到这 1 个字节数据到达时,HTTP/2 应用层才能从内核中拿到数据,这就是 HTTP/2 队头阻塞问题。

所以,一旦发生了丢包现象,就会触发 TCP 的重传机制,这样在一个 TCP 连接中的所有的 HTTP 请求都必须等待这个丢了的包被重传回来

HTTP/3 做了哪些优化?

HTTP/2 队头阻塞的问题是因为 TCP,所以 HTTP/3 把 HTTP 下层的 TCP 协议改成了 UDP!

UDP 发送是不管顺序,也不管丢包的,所以不会出现像 HTTP/2 队头阻塞的问题。大家都知道 UDP 是不可靠传输的,但基于 UDP 的 QUIC 协议 可以实现类似 TCP 的可靠性传输。

QUIC 有以下 3 个特点。

  • 无队头阻塞

  • 更快的连接建立

  • 连接迁移 

无队头阻塞

QUIC 协议也有类似 HTTP/2 Stream 与多路复用的概念,也是可以在同一条连接上并发传输多个 Stream,Stream 可以认为就是一条 HTTP 请求。

        QUIC 有自己的一套机制可以保证传输的可靠性的。当某个流发生丢包时,只会阻塞这个流,其他流不会受到影响,因此不存在队头阻塞问题。这与 HTTP/2 不同,HTTP/2 只要某个流中的数据包丢失了,其他流也会因此受影响。所以,QUIC 连接上的多个 Stream 之间并没有依赖,都是独立的,某个流发生丢包了,只会影响该流,其他流不受影响。

更快的连接建立

对于 HTTP/1 和 HTTP/2 协议,TCP 和 TLS 是分层的,分别属于内核实现的传输层、openssl 库实现的表示层,因此它们难以合并在一起,需要分批次来握手,先 TCP 握手,再 TLS 握手。

        HTTP/3 在传输数据前虽然需要 QUIC 协议握手,但是这个握手过程只需要 1 RTT,握手的目的是为确认双方的「连接 ID」,连接迁移就是基于连接 ID 实现的。但是 HTTP/3 的 QUIC 协议并不是与 TLS 分层,而是 QUIC 内部包含了 TLS,它在自己的帧会携带 TLS 里的“记录”,再加上 QUIC 使用的是 TLS/1.3,因此仅需 1 个 RTT 就可以「同时」完成建立连接与密钥协商

甚至,在第二次连接的时候,应用数据包可以和 QUIC 握手信息(连接信息 + TLS 信息)一起发送,达到 0-RTT 的效果。如下图右边部分,HTTP/3 当会话恢复时,有效负载数据与第一个数据包一起发送,可以做到 0-RT

连接迁移

基于 TCP 传输协议的 HTTP 协议,由于是通过四元组(源 IP、源端口、目的 IP、目的端口)确定一条 TCP 连接。

        那么当移动设备的网络从 4G 切换到 WIFI 时,意味着 IP 地址变化了,那么就必须要断开连接,然后重新建立连接。而建立连接的过程包含 TCP 三次握手和 TLS 四次握手的时延,以及 TCP 慢启动的减速过程,给用户的感觉就是网络突然卡顿了一下,因此连接的迁移成本是很高的。

        而 QUIC 协议没有用四元组的方式来“绑定”连接,而是通过连接 ID 来标记通信的两个端点,客户端和服务器可以各自选择一组 ID 来标记自己,因此即使移动设备的网络变化后,导致 IP 地址变化了,只要仍保有上下文信息(比如连接 ID、TLS 密钥等),就可以“无缝”地复用原连接,消除重连的成本,没有丝毫卡顿感,达到了连接迁移的功能。

所以, QUIC 是一个在 UDP 之上的 TCP + TLS + HTTP/2 的多路复用的协议。

        QUIC 是新协议,对于很多网络设备,根本不知道什么是 QUIC,只会当做 UDP,这样会出现新的问题,因为有的网络设备是会丢掉 UDP 包的,而 QUIC 是基于 UDP 实现的,那么如果网络设备无法识别这个是 QUIC 包,那么就会当作 UDP包,然后被丢弃。HTTP/3 现在普及的进度非常的缓慢,不知道未来 UDP 是否能够逆袭 TCP。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1509950.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++14之std::index_sequence和std::make_index_sequence

相关文章系列 std::apply源码分析 C之std::tuple(一) : 使用精讲(全) 目录 1.std::integer_sequence 2.std::index_sequence 3.std::make_index_sequence 4.运用 4.1.打印序列的值 4.2.编译时求值 4.3.std::tuple访问值 5.总结 1.std::integer_sequence 运行时定义一个…

OSI七层模型TCP四层模型横向对比

OSI 理论模型(Open Systems Interconnection Model)和TCP/IP模型 七层每一层对应英文 应用层(Application Layer) 表示层(Presentation Layer) 会话层(Session Layer) 传输层&#x…

【JavaScript】面试手撕深拷贝

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 深拷贝的作用深浅拷贝的区别浅拷贝深拷贝 深拷贝实现方式JSON.parse(JSON.stringi…

开发知识点-python-Tornado框架

介绍 Tornado是一个基于Python语言的高性能Web框架和异步网络库,它专注于提供快速、可扩展和易于使用的网络服务。由于其出色的性能和灵活的设计,Tornado被广泛用于构建高性能的Web应用程序、实时Web服务、长连接的实时通信以及网络爬虫等领域。 Torna…

【物联网设备端开发】FastBee Arduino固件开发指南

目录 一、收集数据 二、打开FastBeeArduino 源码 三、修改 Config.cpp 文件 四、修改物模型数据 五、小程序配网 本文以 WeMOS D1 R1(8266WIFI 模块)固件开发为例,实现以下功能: 设备认证设备 Mqtt 交互Wifi 类设备配网 一…

ffmpeg解码和渲染理解

ffmpeg解码和渲染理解 ffmpeg视频解码步骤 FFmpeg 是一个功能强大的跨平台多媒体处理工具,包含了音视频编解码、封装/解封装、过滤器等功能。下面是一般情况下使用 FFmpeg 进行视频解码的步骤: 初始化 FFmpeg 库:首先需要初始化 FFmpeg 库&a…

SAM(Segment Anything Model)大模型使用--point prompt

概述 本系列将做一个专题,主要关于介绍如何在代码上运行并使用SAM模型以及如何用自己的数据集微调SAM模型,也是本人的毕设内容,这是一个持续更新系列,欢迎大家关注~ SAM(Segment Anything Model) SAM基于…

自然语言处理的概念及发展介绍

自然语言处理(Natural Language Processing,NLP)是计算机科学、人工智能和语言学的交叉领域,旨在使计算机能够理解、解释和生成人类语言。自然语言处理的发展对于实现人机交互、信息检索、机器翻译、情感分析等应用至关重要。 概念…

【Java设计模式】十五、命令模式

文章目录 1、命令模式2、案例3、总结 1、命令模式 餐厅点餐: 创建一个厨师对象,让服务员对象调用厨师对象中的方法进行点餐通知,当后面厨师换人,服务员类的代码也要修改,耦合 不符合开闭。理想状态:服务员…

JVM 垃圾回收相关

一、什么是垃圾 目录 一、什么是垃圾回收 二、 死亡对象的判断算法 a) 引用计数算法 b)可达性分析算法 三、垃圾回收算法 a) 标记-清除算法 b) 复制算法 c) 标记-整理算法 d) 分代算法 回收 垃圾回收(Garbage Collection,简称GC)是…

考研C语言复习初阶(5)

目录 一.表达式求值 1.1隐式类型转换 1.2 算术转换 12.3 操作符的属性 二. 指针是什么? 三 指针和指针类型 3.1 指针-整数 3.2 指针的解引用 3.3 野指针 四.指针运算 4.1 指针-整数 4.2 指针-指针 4.3 指针的关系运算 5. 指针和数组 6. 二级指针 …

使用IAD电话交换机(语音网关)将电话外线对接到FreeSWITCH SIP服务器

在我们初步了解了FreeSWITCH这样的SIP服务器之后,常见的一个需求就是把真实的电信世界(比如固话、手机)对接到SIP服务器里。 今天我们就介绍一个简单的方法,在3分钟内就把电信局和你的SIP软交换机融合通信起来。 IAD和SIP服务器环…

解决arco-design路由跳转,menu不激活的问题

问题 点击【返回】&#xff0c;路由跳转上一层至首页。左侧菜单栏没有实时更新&#xff0c;激活状态有问题。 解决方法如下&#xff0c;不闪白屏 Main.vue <template><div class"main"><a-layout class"main-layout"><a-layout-…

CH343 使用USB转串口发送CAN报文

文章目录 原启UART 走CAN收发器CH343 模拟CAN发送CPP ASIO SocketCANVXCANGithub Link 原启 早些年自动驾驶激光雷达还不支持PTP之类的时间同步, 很多都是用PPS时间同步, 激光雷达一般装的离控制器或者GNSS天线较远, 车上的线束一般数据电源各种都包在一起的, 如果3.3V直接从域…

私立医院的革命者:大数据解决方案全面解析

第一部分&#xff1a;背景 在信息化飞速发展的今天&#xff0c;医疗行业正经历着一场深刻的数字化转型。特别是对于私立医院来说&#xff0c;要在这个变革的浪潮中立于不败之地&#xff0c;就必须拥抱新技术&#xff0c;优化服务流程&#xff0c;提高医疗质量。大数据技术&…

Python教程-SchemDraw绘制电路图

电路图是电子工程师和电子爱好者的重要工具&#xff0c;用于图形化表示电子元件之间的连接关系。在Python中&#xff0c;有许多库可以用于绘制电路图&#xff0c;其中之一就是SchemDraw。本文将介绍如何使用SchemDraw库&#xff0c;通过简单的Python代码绘制出清晰、美观的电路…

力扣 617-合并二叉树

二叉树使用递归&#xff0c;就要想使用前中后哪种遍历方式&#xff1f; 本题使用哪种遍历都是可以的&#xff01; 我们下面以前序遍历为例。 那么我们来按照递归三部曲来解决&#xff1a; 确定递归函数的参数和返回值&#xff1a; 首先要合入两个二叉树&#xff0c;那么参…

学习java第二天

一.注释 单行注释&#xff1a; // 这是一个单行注释 int x 10; // 初始化一个变量x为10 多行注释&#xff1a; /* 这是一个多行注释 可以用来注释多行代码 */ int y 20; // 初始化一个变量y为20 文档注释&#xff1a; /* 这是一个多行注释 可以用来注释多行代码 */ int…

51单片机基础篇系列-LED灯点亮代码部分

&#x1f308;个人主页: 会编辑的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” #include<reg52.h> //包含单片机内部寄存器 void main() //&#xff08;&#xff09;{P10xfe;//1111 1110while(1); // } 上面是第一个 LED实验 #include<reg52.h>…

PythonWeb——Django框架

框架介绍 1.什么是框架? 框架就是程序的骨架&#xff0c;主体结构&#xff0c;也是个半成品。 2.框架的优缺点 可重用、成熟,稳健、易扩展、易维护 3.Python中常见的框架 大包大揽 Django被官方称之为完美主义者的Web框架。力求精简web.py和Tornado新生代微框架Flask和B…