plt和cv2有不同的图像表示方式和颜色通道顺序

news2025/3/10 13:50:12

在处理图像时,matplotlib.pyplot (简称 plt) 和 OpenCV (简称 cv2) 有不同的图像表示方式和颜色通道顺序。了解这些区别对于正确处理和显示图像非常重要。

1. 图像形状和颜色通道顺序

matplotlib.pyplot (plt)
  • 形状plt 通常使用 (height, width, channels) 的形状来表示图像。
  • 颜色通道顺序plt 使用 RGB 顺序,即红、绿、蓝。
OpenCV (cv2)
  • 形状cv2 通常使用 (height, width, channels) 的形状来表示图像。
  • 颜色通道顺序cv2 使用 BGR 顺序,即蓝、绿、红。

2. 示例代码

使用 matplotlib.pyplot 读取和显示图像
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
img = plt.imread('path_to_image.jpg')

# 显示图像
plt.imshow(img)
plt.show()
使用 OpenCV 读取和显示图像
import cv2
import matplotlib.pyplot as plt

# 读取图像
img = cv2.imread('path_to_image.jpg')

# 将 BGR 转换为 RGB
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 显示图像
plt.imshow(img_rgb)
plt.show()

3. 转换颜色通道顺序

如果你需要在 plt 和 cv2 之间转换图像,可以使用 cv2.cvtColor 函数来转换颜色通道顺序。

从 BGR 到 RGB
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_bgr = cv2.imread('path_to_image.jpg')

# 将 BGR 转换为 RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

# 显示图像
plt.imshow(img_rgb)
plt.show()
从 RGB 到 BGR
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_rgb = plt.imread('path_to_image.jpg')

# 将 RGB 转换为 BGR
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)

# 显示图像
cv2.imshow('Image', img_bgr)
cv2.waitKey(0)
cv2.destroyAllWindows()

4. 保存图像

使用 matplotlib.pyplot 保存图像
import matplotlib.pyplot as plt

# 读取图像
img = plt.imread('path_to_image.jpg')

# 保存图像
plt.imsave('output_image.jpg', img)
使用 OpenCV 保存图像
import cv2

# 读取图像
img = cv2.imread('path_to_image.jpg')

# 保存图像
cv2.imwrite('output_image.jpg', img)

5. 总结

  • plt:使用 (height, width, channels) 形状,颜色通道顺序为 RGB。
  • cv2:使用 (height, width, channels) 形状,颜色通道顺序为 BGR。
  • 转换:使用 cv2.cvtColor 函数在 BGR 和 RGB 之间进行转换。

详细解释一下 matplotlib.pyplot (简称 plt) 和 OpenCV (简称 cv2) 在处理图像时的形状和颜色通道顺序的区别,以及它们与模型中 tensor 的区别。

1. matplotlib.pyplot (plt)

  • 形状plt 通常使用 (height, width, channels) 的形状来表示图像。
  • 颜色通道顺序plt 使用 RGB 顺序,即红、绿、蓝。
示例代码
import matplotlib.pyplot as plt
import numpy as np

# 读取图像
img = plt.imread('path_to_image.jpg')

# 显示图像
plt.imshow(img)
plt.show()

2. OpenCV (cv2)

  • 形状cv2 通常使用 (height, width, channels) 的形状来表示图像。
  • 颜色通道顺序cv2 使用 BGR 顺序,即蓝、绿、红。
示例代码
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_bgr = cv2.imread('path_to_image.jpg')

# 将 BGR 转换为 RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

# 显示图像
plt.imshow(img_rgb)
plt.show()

3. 模型中的 tensor

在深度学习模型中,图像通常表示为 tensor,其形状和颜色通道顺序可能与 plt 和 cv2 有所不同。

  • 形状:模型中的 tensor 通常使用 (batch_size, channels, height, width) 的形状来表示图像。
  • 颜色通道顺序:模型中的 tensor 通常使用 RGB 顺序,即红、绿、蓝。
示例代码
import torch
import torchvision.transforms as transforms
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_bgr = cv2.imread('path_to_image.jpg')

# 将 BGR 转换为 RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

# 将图像转换为 tensor
transform = transforms.ToTensor()
img_tensor = transform(img_rgb)

# 打印 tensor 的形状
print(img_tensor.shape)  # 输出: (3, height, width)

# 如果需要批量处理,可以添加一个 batch 维度
img_tensor = img_tensor.unsqueeze(0)  # 形状变为 (1, 3, height, width)

# 显示图像
img_np = img_tensor.squeeze(0).permute(1, 2, 0).numpy()  # 转换回 (height, width, channels)
plt.imshow(img_np)
plt.show()

4. 转换颜色通道顺序

如果你需要在 pltcv2 和模型中的 tensor 之间转换图像,可以使用以下方法:

从 BGR 到 RGB
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_bgr = cv2.imread('path_to_image.jpg')

# 将 BGR 转换为 RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

# 显示图像
plt.imshow(img_rgb)
plt.show()
从 RGB 到 BGR
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_rgb = plt.imread('path_to_image.jpg')

# 将 RGB 转换为 BGR
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)

# 显示图像
cv2.imshow('Image', img_bgr)
cv2.waitKey(0)
cv2.destroyAllWindows()
从 tensor 到 plt 或 cv2
import torch
import torchvision.transforms as transforms
import cv2
import matplotlib.pyplot as plt

# 读取图像
img_bgr = cv2.imread('path_to_image.jpg')

# 将 BGR 转换为 RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

# 将图像转换为 tensor
transform = transforms.ToTensor()
img_tensor = transform(img_rgb)

# 将 tensor 转换回 numpy 数组
img_np = img_tensor.permute(1, 2, 0).numpy()  # 转换回 (height, width, channels)

# 显示图像
plt.imshow(img_np)
plt.show()

5. 总结

  • plt:使用 (height, width, channels) 形状,颜色通道顺序为 RGB。
  • cv2:使用 (height, width, channels) 形状,颜色通道顺序为 BGR。
  • 模型中的 tensor:使用 (batch_size, channels, height, width) 形状,颜色通道顺序为 RGB。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2312720.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【The Rap of China】2018

中国新说唱第一季,2018 2018年4月13日,该节目通过官方微博宣布,其第二季将更名为《中国新说唱》。 《中国新说唱2018》由张震岳、MC Hotdog、潘玮柏、邓紫棋、WYF 担任明星制作人; 艾热获得冠军、那吾克热玉素甫江获得亚军、ICE…

通义万相2.1开源版本地化部署攻略,生成视频再填利器

2025 年 2 月 25 日晚上 11:00 通义万相 2.1 开源发布,前两周太忙没空搞它,这个周末,也来本地化部署一个,体验生成效果如何,总的来说,它在国内文生视频、图生视频的行列处于领先位置&#xff0c…

好玩的谷歌浏览器插件-自定义谷歌浏览器光标皮肤插件-Chrome 的自定义光标

周末没有啥事 看到了一个非常有意思的插件 就是 在使用谷歌浏览器的时候,可以把鼠标的默认样式换一个皮肤。就像下面的这种样子。 实际谷歌浏览器插件开发对于有前端编程基础的小伙伴 还是比较容易的,实际也是写 html css js 。 所以这个插件使用的技术…

svn删除所有隐藏.svn文件,文件夹脱离svn控制

新建一个文件,取名remove-svn-folders.reg,输入如下内容: Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Folder\shell\DeleteSVN] "Delete SVN Folders" [HKEY_LOCAL_MACHINE\SOFTWARE\Class…

六十天前端强化训练之第十二天之闭包深度解析

欢迎来到编程星辰海的博客讲解 目录 第一章:闭包的底层运行机制 1.1 词法环境(Lexical Environment)的构成JavaScript 引擎通过三个关键组件管理作用域: 1.2 作用域链的创建过程当函数被定义时: 1.3 闭包变量的生命…

DeepSeek R1-32B医疗大模型的完整微调实战分析(全码版)

DeepSeek R1-32B微调实战指南 ├── 1. 环境准备 │ ├── 1.1 硬件配置 │ │ ├─ 全参数微调:4*A100 80GB │ │ └─ LoRA微调:单卡24GB │ ├── 1.2 软件依赖 │ │ ├─ PyTorch 2.1.2+CUDA │ │ └─ Unsloth/ColossalAI │ └── 1.3 模…

10.2 继承与多态

文章目录 继承多态 继承 继承的作用是代码复用。派生类自动获得基类的除私有成员外的一切。基类描述一般特性,派生类提供更丰富的属性和行为。在构造派生类时,其基类构造函数先被调用,然后是派生类构造函数。在析构时顺序刚好相反。 // 基类…

[网络爬虫] 动态网页抓取 — Selenium 元素定位

🌟想系统化学习爬虫技术?看看这个:[数据抓取] Python 网络爬虫 - 学习手册-CSDN博客 在使用 Selenium 时,往往需要先定位到指定元素,然后再执行相应的操作。例如,再向文本输入框中输入文字之前,…

静态网页的爬虫(以电影天堂为例)

一、电影天堂的网址(url) 电影天堂_免费电影_迅雷电影下载_电影天堂网最好的迅雷电影下载网,分享最新电影,高清电影、综艺、动漫、电视剧等下载!https://dydytt.net/index.htm 我们要爬取这个页面上的内容 二、代码…

Android设备是如何进入休眠的呢?

首先我们手机灭屏后,一般需要等一段时间CPU才真正进入休眠。即Android设备屏幕暗下来的时候,并不是立即就进入了休眠模式;当所有唤醒源都处于de-avtive状态后,系统才会进入休眠。在手机功耗中从灭屏开始到CPU进入休眠时间越短&…

ctfshow做题笔记—栈溢出—pwn65~pwn68

目录 前言 一、pwn65(你是一个好人) 二、pwn66(简单的shellcode?不对劲,十分得有十二分的不对劲) 三、pwn67(32bit nop sled)(确实不会) 四、pwn68(64bit nop sled) 前言 做起来比较吃力哈哈,自己还是太菜了&…

JS中的闭包(closures)一种强大但易混淆的概念

JavaScript 中的闭包(closures)被认为是一种既强大又易混淆的概念。闭包允许函数访问其外部作用域的变量,即使外部函数已执行完毕,这在状态维护和回调函数中非常有用。但其复杂性可能导致开发者的误解,尤其在变量捕获和…

Element使用

Element(美化网页&#xff09; ElementUI的使用注意事项&#xff1a; Element.ui的使用基于Vue环境&#xff0c;于是Element相关组件的使用必须放在Vue对象绑定的视图中去 ElementUI的JS库的引入必须放在vue.js库的后面 <!-- 引入样式 --><link rel"styleshee…

基于YOLO11深度学习的电瓶车进电梯检测与语音提示系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

R语言的基础命令及实例操作

> T & F [1] FALSE > T & T [1] TRUE > T | F [1] TRUE > F | F [1] FALSE > a <- c(T,F,T) > b <- c(F,F,T) > a & b [1] FALSE FALSE TRUE > a | b [1] TRUE FALSE TRUE 在 R 中&#xff0c;大小写是敏感的&#xff0c;也就是说…

知识蒸馏综述Knowledge Distillation: A Survey解读

论文链接&#xff1a;Knowledge Distillation: A Survey 摘要&#xff1a;近年来&#xff0c;深度神经网络在工业界和学术界都取得了成功&#xff0c;尤其是在计算机视觉任务方面。深度学习的巨大成功主要归功于它能够扩展以对大规模数据进行编码&#xff0c;并且能够处理数十…

第十五届蓝桥杯省赛电子类单片机学习过程记录(客观题)

客观试题: 01.典型的BUCK电源电路包含哪些关键器件(ABCD) A. 电容 B. 二极管 C. 电感 D. MOSFET 解析: 典型的 BUCK 电源电路是一种降压型的直流-直流转换电路,它包含以下关键器件: A.电容:电容在电路中起到滤波的作用。输入电容用于平滑输入电压的波动,减少电源噪声对…

【c++】平移字符串

说明 实现字符串的左移与右移 示例代码 #include <iostream> #include <string> using namespace std;int main() {string str1 "12345";//左移2位string str2 str1.substr(2) str1.substr(0, 2);cout << str2 << endl;//右移2位&…

为什么DDPG需要目标网络而A2C不需要?

在强化学习中&#xff0c;DDPG需要目标网络而A2C不需要的主要原因在于算法架构、更新方式和目标稳定性需求的差异&#xff1a; Q值估计的稳定性需求不同 DDPG的Critic网络需要估计状态-动作值函数 Q ( s , a ) Q(s,a) Q(s,a)&#xff0c;其目标值的计算涉及下一个状态的最大Q值…

蓝桥杯 C++ b组 统计子矩阵深度解析

题目大意&#xff1a;给定一个 NM 的矩阵 A&#xff0c;请你统计有多少个子矩阵 (最小11&#xff0c;最大NM) 满足子矩阵中所有数的和不超过给定的整数 K&#xff1f; 前言&#xff1a;这题很容易想到二维前缀和优化&#xff0c;然后枚举子矩阵&#xff0c;但这样时间复杂度为…