yolov7添加spd-conv注意力机制

news2024/11/17 15:48:02

一、spd-conv是什么?

SPD-Conv(Symmetric Positive Definite Convolution)是一种新颖的卷积操作,它主要应用于处理对称正定矩阵(SPD)数据。在传统的卷积神经网络(CNN)中,卷积操作通常用于处理图像数据,而SPD-Conv的引入则将卷积扩展到了处理更加复杂的数据结构,例如在计算机视觉、医学影像分析和材料科学等领域中广泛存在的对称正定矩阵数据。

        1.SPD矩阵的特点

对称正定矩阵是一类特殊的矩阵,具有严格的数学定义,通常表示为X∈Rn×nX∈Rn×n,其中 XX 是对称正定矩阵,满足 XT=XXT=X 和对于任意非零向量 vv,有 vTXv>0vTXv>0。这种矩阵广泛应用于协方差矩阵、距离度量、流形学习等领域,并且在一些任务中,数据被表示为SPD矩阵,例如医学图像的核磁共振(MRI)图像。

        2.SPD-Conv的引入

  • SPD-Conv是针对SPD数据设计的卷积操作。与传统的卷积操作不同,SPD-Conv考虑了SPD矩阵的特殊结构和性质。它在对SPD数据进行卷积时,保持了输入和输出的对称正定性,确保了卷积结果仍然是对称正定矩阵。这种特性使得SPD-Conv适用于处理一些需要保持数据结构特性的任务,例如在医学影像中保持图像的对称性和正定性。
  • SPD-Conv是一种新的构建块,用于替代现有的CNN体系结构中的步长卷积和池化层。它由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成。
  • 空间到深度(SPD)层的作用是将输入特征图的每个空间维度降低到通道维度,同时保留通道内的信息。这可以通过将输入特征图的每个像素或特征映射到一个通道来实现。在这个过程中,空间维度的大小会减小,而通道维度的大小会增加。
  • 非步长卷积(Conv)层是一种标准的卷积操作,它在SPD层之后进行。与步长卷积不同,非步长卷积不会在特征图上移动,而是对每个像素或特征映射进行卷积操作。这有助于减少在SPD层中可能出现的过度下采样问题,并保留更多的细粒度信息。
  • SPD-Conv的组合方式是将SPD层和Conv层串联起来。具体来说,输入特征图首先通过SPD层进行转换,然后输出结果再通过Conv层进行卷积操作。这种组合方式可以在不丢失信息的情况下减少空间维度的尺寸,同时保留通道内的信息,有助于提高CNN对低分辨率图像和小型物体的检测性能。

总结起来,SPD-Conv是一种新的构建块,旨在解决现有CNN体系结构中步长卷积和池化层的问题。它由一个空间到深度(SPD)层和一个非步长卷积(Conv)层组成,能够提高模型对低分辨率图像和小型物体的检测性能,并降低对“良好质量"输入的依赖。

二、使用步骤

1.第一步:先在models/common.py加上


class space_to_depth(nn.Module):
    # Changing the dimension of the Tensor
    def __init__(self, dimension=1):
        super().__init__()
        self.d = dimension

    def forward(self, x):
         return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)

2.第二步:models/yolo.py加上

 elif m is space_to_depth:
            c2 = 4 * ch[f]

同时在769行里面加入space to death

3.第三步:修改yolov7的yaml文件

# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# anchors
anchors:
  - [12,16, 19,36, 40,28]  # P3/8
  - [36,75, 76,55, 72,146]  # P4/16
  - [142,110, 192,243, 459,401]  # P5/32

# yolov7 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [32, 3, 1]],  # 0

   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   [-1, 1, Conv, [64, 3, 1]],

   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
   [-1, 1, Conv, [64, 1, 1]],
   [-2, 1, Conv, [64, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]],  # 11

   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 16-P3/8
   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]],  # 24

   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 29-P4/16
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 37

   [-1, 1, MP, []],
   [-1, 1, Conv, [512, 1, 1]],
   [-3, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, -3], 1, Concat, [1]],  # 42-P5/32
   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -3, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [1024, 1, 1]],  # 50
  ]

# yolov7 head
head:
  [[-1, 1, SPPCSPC, [512]], # 51

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [37, 1, Conv, [256, 1, 1]], # route backbone P4
   [[-1, -2], 1, Concat, [1]],

   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 63

   [-1, 1, Conv, [128, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [24, 1, Conv, [128, 1, 1]], # route backbone P3
   [[-1, -2], 1, Concat, [1]],

   [-1, 1, Conv, [128, 1, 1]],
   [-2, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [-1, 1, Conv, [64, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [128, 1, 1]], # 75

   [-1, 1, MP, []],
   [-1, 1, Conv, [128, 1, 1]],
   [-3, 1, Conv, [128, 1, 1]],
   [-1, 1, Conv, [128, 3, 2]],
   [[-1, -3, 63], 1, Concat, [1]],

   [-1, 1, Conv, [256, 1, 1]],
   [-2, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [-1, 1, Conv, [128, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [256, 1, 1]], # 88

   [-1, 1, MP, []],
   [-1, 1, Conv, [256, 1, 1]],
   [-3, 1, Conv, [256, 1, 1]],
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, -3, 51], 1, Concat, [1]],

   [-1, 1, Conv, [512, 1, 1]],
   [-2, 1, Conv, [512, 1, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [-1, 1, Conv, [256, 3, 1]],
   [[-1, -2, -3, -4, -5, -6], 1, Concat, [1]],
   [-1, 1, Conv, [512, 1, 1]], # 101
   [-1,1,space_to_depth,[1]],   # 2 -P2/4
   [-1, 1, Conv, [512, 1, 1]], # 103

   [75, 1, RepConv, [256, 3, 1]],
   [88, 1, RepConv, [512, 3, 1]],
   [103, 1, RepConv, [1024, 3, 1]],

   [[104,105,106], 1, IDetect, [nc, anchors]],   # Detect(P3, P4, P5)
  ]

总结

以上只是·简单添加了一层spd,需要添加多层spd-con可以直接修改yolov7的yaml配置文件,不需要修改其他。

备注:
spd添加层数地方只可以在512层的网络中修改,其他的层数修改会报错,图像张量不匹配,128.256以及1024经过变换之后张量改变对不上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1488709.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【java数据结构】模拟二叉树的链式结构之孩子表示法,掌握背后的实现逻辑

📢编程环境:idea 📢树结构,以及叶子,结点,度等一些名词是什么意思,本篇不再赘述。 【java数据结构】模拟二叉树的链式结构之孩子表示法,掌握背后的实现逻辑 1. 认识二叉树1.1 二叉树…

桂院校园导航 | 云上高校导航 云开发项目 二次开发教程 2.0

Gitee代码仓库:桂院校园导航小程序 GitHub代码仓库:GLU-Campus-Guide 演示视频 【校园导航小程序】2.0版本 静态/云开发项目 演示 云开发项目 2.0版本 升级日志 序号 板块 详情 1 首页 重做了首页,界面更加高效和美观 2 校园页 新增…

Python判断结构20个实例

基本理论基础 Python中的选择判断结构是一种编程中常用的控制结构,它用于根据条件的真假决定程序的执行路径。选择判断结构有多种类型,包括if语句、if-else语句、if-elif-else语句以及嵌套的选择结构。 首先,我们来介绍最常见的if语句。if语…

浅谈WPF之Binding数据校验和类型转换

在WPF开发中,Binding实现了数据在Source和Target之间的传递和流通,就像现实生活中的一条条道路,建立起了城镇与城镇之间的衔接,而数据校验和类型转换,就像高速公路之间的收费站和安检站。那在WPF开发中,如何…

引入本地图片报错:require is not defined

文章目录 问题分析1. 原始写法2. 最初的解决方案3. 尝试使用 require 引入4. 封装方法进行解析引入图片 问题 Vue3 Vite 使用本地图片报错:require is not defined 分析 1. 原始写法 刚开始我是这样写的,数据是这样定义的,但是数据没出…

Vue.js+SpringBoot开发高校实验室管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实验管理模块2.4 实验设备模块2.5 实验订单模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示五、样例代码5.1 查询实验室设备5.2 实验放号5.3 实验预定 六、免责说明 一、摘…

2024年R2移动式压力容器充装证考试题库及R2移动式压力容器充装试题解析

题库来源:安全生产模拟考试一点通公众号小程序 2024年R2移动式压力容器充装证考试题库及R2移动式压力容器充装试题解析是安全生产模拟考试一点通结合(安监局)特种作业人员操作证考试大纲和(质检局)特种设备作业人员上…

快速幂(求解原理+例题)

目录 反复平方法(快速幂): 代码: 例题:快速幂求逆元 作用: 快速求出 的结果。 时间复杂度: O(logk) 如果使用一般做法,从1循环到k,时间复杂度是O(k) 反复平方法&am…

倒计时35天

小红的子序列权值和 (nowcoder.com) #include<bits/stdc.h> using namespace std; #define int long long const int N2e56; const int inf0x3f3f3f3f; const double piacos(-1.0); const int mod1e97; int c[1100][1100]; int a[1100],b[5]; void solve() {int n;cin>…

照片变年轻怎么操作?收好这几个方法

照片变年轻怎么操作&#xff1f;在这个数字时代&#xff0c;我们手中的智能手机和相机成为了记录生活的重要工具。然而&#xff0c;随着时间的推移&#xff0c;照片中的人物往往会因为岁月的痕迹而显得苍老。那么&#xff0c;有没有一种方法可以让这些珍贵的回忆重新焕发青春呢…

[DevOps云实践] 跨AWS账户及Region调用Lambda

[DevOps云实践] 跨AWS账户及Region调用Lambda 本文將幫大家理清一下幾個問題: 如何跨不同AWS賬戶,不同Region來調用Lambda? 不同Lambda之間如何互相調用?有時我們希望我們的Lambda脚本能夠運行在多個AWS賬戶中的不同Region下,但是,我們還不希望每個下面都去建立一個運行…

从0开始学习NEON(1)

1、前言 在上个博客中对NEON有了基础的了解&#xff0c;本文将针对一个图像下采样的例子对NEON进行学习。 学习链接:CPU优化技术 - NEON 开发进阶 上文链接:https://blog.csdn.net/weixin_42108183/article/details/136412104 2、第一个例子 现在有一张图片&#xff0c;需…

【CSP试题回顾】201403-2-窗口

CSP-201403-2-窗口 解题思路 窗口存储结构&#xff1a;首先&#xff0c;使用一个结构体MyWindow来存储每个窗口的信息&#xff0c;包括窗口的序号&#xff08;index&#xff09;和矩形区域的四个顶点坐标&#xff08;x1, y1, x2, y2&#xff09;。所有窗口的信息存储在一个向量…

17 easy 290. 单词规律

//给定一种规律 pattern 和一个字符串 s &#xff0c;判断 s 是否遵循相同的规律。 // // 这里的 遵循 指完全匹配&#xff0c;例如&#xff0c; pattern 里的每个字母和字符串 s 中的每个非空单词之间存在着双向连接的对应规律。 // // // // 示例1: // // //输入: patte…

一篇文章教会你如何在IOS真机上完美运行React Native

一篇文章教会你如何在IOS真机上完美运行React Native 项目初始化项目配置可能遇到的问题没有账号也没有Team设备上没有打开开发者模式&#xff0c;也没有信任开发者证书 无线调试 项目初始化 在终端使用**npx react-native init ProjectName**初始化React Native项目。 进入项…

selenuim【1】$x(‘xpath’)、WebDriverWait()、try/assert

文章目录 1、执行driver webdriver.Chrome()后很久才打开浏览器2、浏览器多元素定位 $x(‘xpath语法’)3、打开浏览器driver.get("网址")执行了很久才开始定位元素&#xff1a;等待&#xff08;1&#xff09;driver.set_page_load_timeout(t)&#xff08;2&#xff…

Live Home 3D Pro:您的私人家居设计师,让家更有温度

Live Home 3D Pro是一款功能强大的家居设计软件&#xff0c;它凭借直观的用户界面和丰富的设计工具&#xff0c;为用户提供了一个全新的家居设计体验。无论您是专业设计师还是普通用户&#xff0c;Live Home 3D Pro都能帮助您轻松实现家居设计的梦想。 Live Home 3D Pro mac版…

枚举与尺取法(蓝桥杯 c++ 模板 题目 代码 注解)

目录 组合型枚举&#xff08;排列组合模板&#xff08;&#xff09;&#xff09;: 排列型枚举&#xff08;全排列&#xff09;模板&#xff1a; 题目一&#xff08;公平抽签 排列组合&#xff09;&#xff1a; ​编辑 代码&#xff1a; 题目二&#xff08;座次问题 全排…

财报解读:基本盘稳定后,联想如何进一步抢占AI时代?

从2021年下半年开始&#xff0c;受诸多因素影响&#xff0c;消费电子行业始终处在承压状态&#xff0c;“不景气”这一关键词屡次被市场提及。 但寒气没有持续&#xff0c;可以看到&#xff0c;消费电子行业正在逐渐回暖。国金证券在今年1月的研报中就指出&#xff0c;从多方面…

学习python时一些笔记

1、winr 命令提示符的快捷键 输入cmd进入终端 2、在终端运行桌面上的python文件 cd desktop(桌面) cd是进入该文件夹的意思。 cd .. 回到上一级 运行python时一定要找到文件的所在地 输入python进入&#xff0c;exit()退出%s字符串占位符%d数字占位符%f浮点数占位符input输…