七天入门大模型 :大模型量化及低成本部署最佳实践

news2024/11/24 17:58:16

图片
七天入门大模型已完成了5篇,喜欢记得收藏、关注、点赞。

  • 七天入门大模型 :LLM大模型基础知识最全汇总
  • 七天入门大模型 :提示词工程 Prompt Engineering,最全的总结来了!
  • 七天入门大模型 :LLM和多模态模型高效推理实践
  • 七天入门大模型 :大模型LLM 训练理论和实战最强总结!
  • 七天入门大模型 :大模型自动评估理论和实战

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了NLP&大模型面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2060,备注:技术交流

模型的量化

前文中我们提到,模型的推理过程是一个复杂函数的计算过程,这个计算一般以矩阵乘法为主,也就是涉及到了并行计算。一般来说,单核CPU可以进行的计算种类更多,速度更快,但一般都是单条计算;而显卡能进行的都是基础的并行计算,做矩阵乘法再好不过。如果把所有的矩阵都加载到显卡上,就会导致显卡显存的占用大量增加,尤其是LLM模型大小从7b、14b、34b到几百b不等,占用显存的大小就是惊人的数字,如何在减少运算量和显存占用的条件下,做到推理效果不下降太多呢?在这里需要引入浮点数和定点数的概念。

图片

双精度浮点数: 在PyTorch中用torch.float64表示,或者在其他语言中也称为double类型,在LLM训练中一般比较少用

全精度浮点数: 在PyTorch中用torch.float32表示

低精度浮点数: 在PyTorch中用torch.bfloat16和torch.float16表示。这两个浮点数的差别在上图中可以表示:

  1. bfloat16的小数部分较短,整数部分较长,这会有利于在训练中减少梯度爆炸的情况(即梯度累加值超过了最大值),但是这种数据类型是在N系列显卡Ampere系列才支持的,即30系列显卡。

  2. float16的小数部分较长,这意味着在精度控制上float16更好,但整数部分较短,比较容易梯度爆炸。

那么是否有更加减少显存占用和计算量的数值表达方式呢?那么可以考虑是否把浮点数转换为定点数(整数),整数计算更快更省显存,如果计算精度下降不大就很完美了。这种用整数计算代替浮点数计算的方法就是量化。

量化的基本原理是根据每个tensor的浮点型最大值和最小值,将其映射为一个固定范围的整形数值集合,比如[-127~127]。假设一个简单的公式:qweight=round(weight/scale),其中qweight代表量化后权重,weight代表量化前权重,scale代表缩放因子,可以看到在进行缩放后为了将浮点型转换为整数过程中增加了round操作丢失了小数部分。在后续计算或反量化为浮点型时存在无法完全还原的情况,这就是精度损失。

按照量化发生的步骤区分,可以划分为PTQ(训练后量化,或离线量化)和QAT(训练感知型量化,或在线量化)。PTQ量化可以分为data-free和calibration两种,前者不使用数据集进行校准直接计算量化因子,后者会根据少量真实数据进行统计分析并对量化因子进行额外校准,但耗费的时间更长。QAT量化会先在待量化的算子上增加一个伪量化结构,并在训练时模拟量化过程并实时更新计算量化因子(类似反向传播过程)及原始权重。QAT由于较为复杂一般作为辅助措施存在,用于改进PTQ量化的技术手段。

按照量化方法可以划分为线性量化、非线性量化(如对数量化)等多种方式,目前较为常用的是线性量化。其中线性量化又可以按照对称性划分为对称量化和非对称量化,非对称量化为了解决weight分布不均匀问题,其在公式中增加了zeropoint项:qweight=round(weight/scale + zeropoint),使稠密数据部分可以得到更宽泛的数值范围。

图片

图片

按照量化粒度划分可以分为逐层量化(每层使用一套量化因子)、逐组量化(在每层中按照group使用一套量化因子)、逐通道量化(按channel划分量化因子)等几种方式。

按照量化最大值的阈值区分,可以分为饱和量化和不饱和量化两种。不饱和量化按照浮点数最大值和量化后最大值的比例计算量化因子,由于原始weight的非均匀性会导致某些整形数值范围存在权重空缺。饱和量化会计算一个中间值以计算出量化因子,因此会舍弃一部分不重要数据,将重要数据尽量均匀的分布到量化数值范围内。

按照量化后的比特数划分,可以分为2比特量化,4比特量化,8比特量化等类型。

一般来说,PyTorch中量化模块的forward过程会先对量化权重进行反量化后使用浮点数进行计算。

下面介绍几种常用的量化库。

AutoGPTQ

该库需要引入额外的校准数据集进行量化校准。相比bitsandbytes量化精度较高,推理速度较快,但训练后不支持合并adapter。

# 例子来自于https://github.com/PanQiWei/AutoGPTQ
from modelscope import AutoTokenizer, snapshot_download
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import logging
import shutil
import os

logging.basicConfig(
    format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
)

pretrained_model_dir = snapshot_download("qwen/Qwen-1_8B-Chat")
quantized_model_dir = "qwen-1_8B-4bit"

shutil.rmtree(quantized_model_dir, ignore_errors=True)
shutil.copytree(pretrained_model_dir, quantized_model_dir)
for _file in os.listdir(quantized_model_dir):
    if ".safetensors" in _file or ".bin" in _file:
        os.remove(os.path.join(quantized_model_dir, _file))

tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, trust_remote_code=True)
examples = [
    tokenizer(
        "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
    )
]

quantize_config = BaseQuantizeConfig(
    bits=4,  # quantize model to 4-bit
    group_size=128,  # it is recommended to set the value to 128
    desc_act=False,  # set to False can significantly speed up inference but the perplexity may slightly bad
)

# load un-quantized model, by default, the model will always be loaded into CPU memory
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config, trust_remote_code=True).to(0)

# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
model.quantize(examples)

# save quantized model
model.save_quantized(quantized_model_dir)

# save quantized model using safetensors
model.save_quantized(quantized_model_dir, use_safetensors=True)

# load quantized model to the first GPU
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir, device="cuda:0", trust_remote_code=True)
# inference with model.generate
print(tokenizer.decode(model.generate(**tokenizer("auto_gptq is", return_tensors="pt").to(model.device))[0]))

在SWIFT中,可以使用已经量化好的AutoGPTQ模型直接进行训练:

swift sft --model_id_or_path qwen/Qwen-7B-Chat-Int4 --model_revision master --sft_type lora --tuner_backend swift --template_type qwen --dtype fp16 --output_dir output --dataset leetcode-python-en --train_dataset_sample -1 --num_train_epochs 1 --max_length 512 --check_dataset_strategy warning --lora_rank 8 --lora_alpha 32 --lora_dropout_p 0.05 --lora_target_modules ALL --gradient_checkpointing true --batch_size 1 --weight_decay 0.01 --learning_rate 1e-4

上面的命令行中,qwen/Qwen-7B-Chat-Int4是已经量化好的Qwen-7B-Chat模型。

Bitsandbytes

bitsandbytes是一种data-free的量化库。该量化方法速度较快(因为其不需要数据校准),因此可以在模型加载时动态量化,且该方法训练速度较快,因此训练兼容性较好,一般用于QLoRA训练中,且训练后可以合并adapter。当由于其没有数据校准过程,因此精度较AutoGPTQ较低。

from modelscope import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
  'qwen/Qwen-1_8B-Chat',
  load_in_8bit=True,
  trust_remote_code=True)

tokenizer = AutoTokenizer.from_pretrained('qwen/Qwen-1_8B-Chat', trust_remote_code=True)

print(model(**tokenizer('how are you?', return_tensors='pt')))

GGML

GGML和GGUF是GGML C++推理库的两种量化格式,其中GGUF格式较新,可以保留模型版本等其他自定义信息。这两种格式也是PTQ形式的量化算法,但GGML和GGUF格式的量化算法更适配于CPU推理,因此在CPU上运行更快,而GPTQ量化对GPU更加友好,两者的推理精度相仿。因此,*.cpp类型使用了GGML推理库的推理框架都更适配于CPU推理。


AWQ

AWQ量化方式假设不是所有权重都影响模型性能,因此在量化过程中会跳过一部分重要权重以减轻量化过程中的精度损失。因此在和GPTQ量化保持类似推理速度的同时可以具备更好的精度。

目前VLLM对AWQ的支持较好, 可以考虑在推理加速时使用AWQ量化方式。

推理部署

推理及部署

训练后的模型会用于推理或者部署。推理即使用模型用输入获得输出的过程,部署是将模型发布到恒定运行的环境中推理的过程。一般来说,LLM的推理可以直接使用PyTorch代码、使用VLLM/XInference/FastChat等框架,也可以使用llama.cpp/chatglm.cpp/qwen.cpp等c++推理框架。

一些推理方法

  • Greedy Search 贪婪搜索方式。按照前面的讲解,模型会按照词表尺寸生成概率。贪婪方式会不断选择生成概率最大的token。该方法由于无脑选择了最大概率,因此模型会倾向于生成重复的文字,一般实际应用中很少使用

  • Beam Search 和贪婪方式的区别在于,beam search会选择概率最大的k个。在生成下一个token时,每个前序token都会生成k个,这样整体序列就有k^2个,从这些序列中选择组合概率最大的k个,并递归地执行下去。k在beam search算法中被称为beam_size

  • Sample 随机采样方式。按照词表每个token的概率采样一个token出来。这个方式多样性更强,是目前主流的生成方式。

重要推理超参数

  • dosample:布尔类型。是否使用随机采样方式运行推理,如果设置为False,则使用beamsearch方式

  • temperature:大于等于零的浮点数。公式为:

,从公式可以看出,如果T取值为0,则效果类似argmax,此时推理几乎没有随机性;取值为正无穷时接近于取平均。一般temperature取值介于[0, 1]之间。取值越高输出效果越随机。如果该问答只存在确定性答案,则T值设置为0。反之设置为大于0。

  • top_k:大于0的正整数。从k个概率最大的结果中进行采样。k越大多样性越强,越小确定性越强。一般设置为20~100之间。

  • 实际实验中可以先从100开始尝试,逐步降低top_k直到效果达到最佳。

  • top_p:大于0的浮点数。使所有被考虑的结果的概率和大于p值,p值越大多样性越强,越小确定性越强。一般设置0.7~0.95之间。

  • 实际实验中可以先从0.95开始降低,直到效果达到最佳。

  • topp比topk更有效,应优先调节这个参数。

  • repetition_penalty: 大于等于1.0的浮点数。如何惩罚重复token,默认1.0代表没有惩罚。

KVCache

上面我们讲过,自回归模型的推理是将新的token不断填入序列生成下一个token的过程。那么,前面token已经生成的中间计算结果是可以直接利用的。具体以Attention结构来说:

图片

推理时的Q是单token tensor,但K和V都是包含了所有历史token tensor的长序列,因此KV是可以使用前序计算的中间结果的,这部分的缓存就是KVCache,其显存占用非常巨大。

VLLM

VLLM支持绝大多数LLM模型的推理加速。它使用如下的方案大幅提升推理速度:

  1. Continuous batching
  • 在实际推理过程中,一个批次多个句子的输入的token长度可能相差很大,最后生成的模型输出token长度相差也很大。在python朴素推理中,最短的序列会等待最长序列生成完成后一并返回,这意味着本来可以处理更多token的GPU算力在对齐过程中产生了浪费。continous batching的方式就是在每个句子序列输出结束后马上填充下一个句子的token,做到高效利用算力。

图片

图片

2. PagedAttention

  • 推理时的显存占用中,KVCache的碎片化和重复记录浪费了50%以上的显存。VLLM将现有输入token进行物理分块,使每块显存内部包含了固定长度的tokens。在进行Attention操作时,VLLM会从物理块中取出KVCache并计算。因此模型看到的逻辑块是连续的,但是物理块的地址可能并不连续。这和虚拟内存的思想非常相似。另外对于同一个句子生成多个回答的情况,VLLM会将不同的逻辑块映射为一个物理块,起到节省显存提高吞吐的作用。

图片

图片

值得注意的是,VLLM会默认将显卡的全部显存预先申请以提高缓存大小和推理速度,用户可以通过参数gpu_memory_utilization控制缓存大小。

首先安装VLLM:

pip install vllm
import os
os.environ['VLLM_USE_MODELSCOPE'] = 'True'
from vllm import LLM, SamplingParams
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="qwen/Qwen-1_8B", trust_remote_code=True)
outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

注意,截止到本文档编写完成,VLLM对Chat模型的推理支持(模板和结束符)存在问题,在实际进行部署时请考虑使用SWIFT或者FastChat。

LLM的generate方法支持直接输入拼接好的tokens(prompttokenids参数,此时不要传入prompts参数),所以外部可以按照自己的模板进行拼接后传入VLLM,

在前文量化章节中我们讲解了AWQ量化,VLLM直接支持传入量化后的模型进行推理:

from vllm import LLM, SamplingParams
import os
import torch
os.environ['VLLM_USE_MODELSCOPE'] = 'True'

# Sample prompts.
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# Create an LLM.
llm = LLM(model="ticoAg/Qwen-1_8B-Chat-Int4-awq", quantization="AWQ", dtype=torch.float16, trust_remote_code=True)
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

VLLM官方文档:https://docs.vllm.ai/en/latest/getting_started/quickstart.html

SWIFT

在SWIFT中,我们支持了VLLM的推理加速手段。

pip install ms-swift[llm] openai

只需要运行下面的命令就可以使用VLLM加速推理:

swift infer --model_id_or_path qwen/Qwen-1_8B-Chat --max_new_tokens 128 --temperature 0.3 --top_p 0.7 --repetition_penalty 1.05 --do_sample true

也支持在部署中使用VLLM:

swift deploy --model_id_or_path qwen/Qwen-1_8B-Chat --max_new_tokens 128 --temperature 0.3 --top_p 0.7 --repetition_penalty 1.05 --do_sample true

调用:

from openai import OpenAI
client = OpenAI(
    api_key='EMPTY',
    base_url='http://localhost:8000/v1',
)
model_type = client.models.list().data[0].id
print(f'model_type: {model_type}')

query = '浙江的省会在哪里?'
messages = [{
    'role': 'user',
    'content': query
}]
resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    seed=42)
response = resp.choices[0].message.content
print(f'query: {query}')
print(f'response: {response}')

# 流式
messages.append({'role': 'assistant', 'content': response})
query = '这有什么好吃的?'
messages.append({'role': 'user', 'content': query})
stream_resp = client.chat.completions.create(
    model=model_type,
    messages=messages,
    stream=True,
    seed=42)

print(f'query: {query}')
print('response: ', end='')
for chunk in stream_resp:
    print(chunk.choices[0].delta.content, end='', flush=True)
print()

"""Out[0]
model_type: qwen-7b-chat
query: 浙江的省会在哪里?
response: 浙江省的省会是杭州市。
query: 这有什么好吃的?
response: 杭州有许多美食,例如西湖醋鱼、东坡肉、龙井虾仁、叫化童子鸡等。此外,杭州还有许多特色小吃,如西湖藕粉、杭州小笼包、杭州油条等。
"""

llama.cpp

llama.cpp是使用c++语言编写的对llama系列模型进行高效推理或量化推理的开源库。该库使用了ggml底层计算库进行推理。在使用之前需要额外将python的weights转为ggml格式或gguf格式方可使用。和llama.cpp类似,还有兼容ChatGLM模型的chatglm.cpp和兼容qwen模型的qwen.cpp和mistral的mistral.cpp。

安装依赖:

pip install modelscope
git clone --recursive https://github.com/QwenLM/qwen.cpp && cd qwen.cpp
cmake -B build
cmake --build build -j --config Release

下载模型:

from modelscope import snapshot_download
print(snapshot_download('qwen/Qwen-1_8B-Chat'))
# /mnt/workspace/.cache/modelscope/qwen/Qwen-1_8B-Chat

将原始模型转换为ggml支持的格式:

python3 qwen_cpp/convert.py -i /mnt/workspace/.cache/modelscope/qwen/Qwen-1_8B-Chat -t q4_0 -o qwen1_8b-ggml.bin
./build/bin/main -m qwen1_8b-ggml.bin --tiktoken /mnt/workspace/.cache/modelscope/qwen/Qwen-1_8B-Chat/qwen.tiktoken -p 你好
# 你好!有什么我可以帮助你的吗?

量化章节中我们介绍,GGML库适合于CPU运行,因此推荐用户在CPU环境中或边缘计算中考虑cpp库进行推理。

FastChat

FastChat是一个开源推理库,侧重于模型的分布式部署实现,并提供了OpenAI样式的RESTFul API。

pip3 install "fschat[model_worker,webui]"
python3 -m fastchat.serve.controller

在新的terminal中启动:

FASTCHAT_USE_MODELSCOPE=true python3 -m fastchat.serve.model_worker --model-path qwen/Qwen-1_8B-Chat --revision v1.0.0

之后在新的terminal中可以运行界面进行推理:

python3 -m fastchat.serve.gradio_web_server

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452610.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenAI发布Sora,另一个层次的黑科技

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

清除Django的管理员admin站点中“Recent Actions“最近活动面板上的所有信息

清除Django的管理员admin站点中"Recent Actions"最近活动面板上的所有信息 本文主要介绍了如何清除Django的管理员admin站点中"Recent Actions"最近活动面板上的所有信息 操作步骤如下 进入Django项目目录中运行代python manage.py shell进入Django shell…

贪心第一天,别太贪了

今天是贪心第一天,做376. 摆动序列时脑子都要干烧了,贪心的题还是很有意思的,对于理论知识,我觉得做题的时候就想这两个问题吧: 如何找到局部最优解呢?用这个局部最优解模拟示例后能通过吗? 455…

Transformer面试十问

1 Scaled Dot-Product Attention中为什么要除以 d k \sqrt{d_k} dk​ ​? 1. 从纯数学上考虑:对于输入均值为0,方差为1的分布,点乘后结果其方差为dk,所以需要缩放一下。下图为原论文注释。 2. 从神经网络上考虑:防止在计算点积…

【Linux】程序地址空间 -- 详解 Linux 2.6 内核进程调度队列 -- 了解

一、程序地址空间回顾 在学习 C/C 时,我们知道内存会被分为几个区域:栈区、堆区、全局/静态区、代码区、字符常量区等。但这仅仅是在语言层面上的理解,是远远不够的。 如下空间布局图,请问这是物理内存吗? 不是&…

C语言scanf函数详解..

1.前言 前面说过了printf函数 他是将二进制表示的整数、浮点数、字符、字符串根据转换规范转换成字符或者字符串 并且打印到了控制台上 那么既然有了输出函数 那么肯定也有输入函数咯 的确如此 他就是scanf函数 他是将字符或者字符串根据转换规范转换成二进制表示的整数、浮点…

Conda管理Python不同版本教程

Conda管理Python不同版本教程 目录 0.前提 1.conda常用命令 2.conda管理python库 不太推荐 pyenv管理Python不同版本教程(本人另一篇博客,姊妹篇) 0.前提 ①anaconda、miniconda在win上推荐前者,在linux上推荐后者&#xff0…

随机过程及应用学习笔记(一)概率论(概要)

概率是随机的基础,在【概率论(概要)】这个部分中仅记录学习随机过程及应用的基本定义和结果。 前言 首先,概率论研究的基础是概率空间。概率空间由一个样本空间和一个概率测度组成,样本空间包含了所有可能的结果&…

LCR 127. 跳跃训练【简单】

LCR 127. 跳跃训练 题目描述: 今天的有氧运动训练内容是在一个长条形的平台上跳跃。平台有 num 个小格子,每次可以选择跳 一个格子 或者 两个格子。请返回在训练过程中,学员们共有多少种不同的跳跃方式。 结果可能过大,因此结果…

Transformer——Attention 注意力机制

注意力机制 Transformer的注意力机制借鉴了人类的注意力机制。人类通过眼睛的视觉单元去扫描图像,其中的重点区域会被大脑的神经元处理从而获得更多的信息,这是人类长期精华所获得的一种能力。 以论文中的例子来看,红色区域表示我们人脑视觉…

linux内核模块find_module()函数详解--02

亲爱的粉丝朋友们大家好,为了更好的服务大家,提升分析问题和解决问题的能力,先针对Linux内核里面的API函数进行详细分析,并利用案例进行说明,加强对内核API函数的认识。 第一:函数原型 //头文件包含 #incl…

晨曦记账本,微信账单全解析,轻松掌握收支明细与总花销!

在这个数字化时代,微信已不仅仅是一个简单的社交工具,更是我们日常生活中不可或缺的支付与收款平台。从购买早餐、支付水电费到线上购物,微信支付已经渗透到我们生活的方方面面。然而,你是否曾经对自己的微信消费产生过疑惑&#…

线程的状态与切换

文章目录 线程的状态与切换一、线程的状态1、操作系统层面(5种)2、Java_API层面(6种) 二、让出时间片 - yield三、线程插队 - join1、源码分析2、应用1 - 等待线程结果3、应用2 - 控制执行顺序 四、计时等待 - sleep五、等待唤醒 …

2024春节联欢晚会刘谦魔术分析

春晚已经越来越拉胯了,看着节目单没一个能打的,本来想说:办不起,就别办呗。 没想到第二天刘谦的魔术以一种很奇特的姿势火起来了,干脆蹭个热度,分析下魔术的原理。 魔术1 这个不算什么新奇的节目&#xf…

老师的“神秘武器”——教育战线的宝藏工具

每次考试成绩发布,是不是总让你头疼不已?面对一摞摞试卷,一个个需要手动输入的成绩,你是否也感到力不从心?别急,今天我就为大家揭秘老师们的“神秘武器”——那些在教育战线上,让老师们事半功倍…

代码随想录刷题笔记-Day18

1. 合并二叉树 617. 合并二叉树https://leetcode.cn/problems/merge-two-binary-trees/ 给你两棵二叉树: root1 和 root2 。 想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)…

【图像分割 2024】ParaTransCNN

【图像分割 2024】ParaTransCNN 论文题目:ParaTransCNN: Parallelized TransCNN Encoder for Medical Image Segmentation 中文题目:用于医学图像分割的并行TransCNN编码器 论文链接:https://arxiv.org/abs/2401.15307 论文代码:H…

机器学习西瓜书之决策树

目录 算法原理剪枝处理连续值处理缺失值处理多变量决策树 算法原理 从逻辑角度:通过一系列if-else语句进行多重判断,比如白富美的判断条件(“白”“富”“美”)。 从几何角度:根据定义的标准进行样本空间的划分。 以二…

应对DDoS攻击:快速恢复网站正常运行的关键步骤

当网站遭受DDoS(分布式拒绝服务)攻击时,可能会导致网站停机、性能下降和用户无法访问等问题,处理DDoS攻击需要采取一系列措施来应对和缓解攻击。 您的网站可能是今天的目标,因为面对DDoS(分布式拒绝服务&am…

【Vue前端】vue使用笔记0基础到高手第2篇:Vue知识点介绍(附代码,已分享)

本系列文章md笔记(已分享)主要讨论vue相关知识。Vue.js是前端三大新框架:Angular.js、React.js、Vue.js之一,Vue.js目前的使用和关注程度在三大框架中稍微胜出,并且它的热度还在递增。Vue.js是一个轻巧、高性能、可组件…