网络原理-TCP_IP(6)

news2024/11/24 1:52:31

网络层

在复杂的网络环境中确定一个合适的路径.

IP协议

与TCP协议并列,都是网络体系中最核心的协议.

基本概念

主机:配有IP地址,但是不进行路由控制的设备;

路由器:即配有IP地址,又能进行路由控制;

节点:主机和路由器的统称; 

协议头格式

4位版本号(version):指定IP协议的版本,对于IPv4来说,就是4.(只有两种:IPv4,IPv6).

4位头部长度(header length):IP头部的长度是多少个32bit,也就是length * 4的字节数,4bit表达的最大数字为15,因此IP的最大长度是60字节.(IP报头也是可以变长的).

8位服务类型(Type Of Sevice):3位优先权字段(已经弃用),4位TOS字段和一位保留字段(必须置为0).4位TOS分别表示:最小延时(吃饭快),最大吞吐量(吃饭多),最高可靠性(IP并非是像TCP一样提供了强可靠性,但是内部也有考虑,减小了丢包率),最小成本(硬件设备的开销).这四者互相冲突,只能选择一个.

16位总长度(total length):IP数据整体占多少字节.(即报头+载荷,虽然IP有长度限制,但也提供了拆包和组包的功能).

16位标识(id):唯一的标识主机发送的报文.如果报文在数据链路层被分片了,那么每一个片中的id都是相同的.(哪些数据应该在一起组装).

3位标志字段:第一位保留(保留的意思是现在不用,但是说不定以后要用到).第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文.第三位表示"更多分片",如果分片了话,最后一个分片置为1,其它是0,类似一个结束标记.

13位分片偏移(framegament offset):是分片相对于原始IP报文开始处的偏移.其实就是表示当前分片在原报文中的哪个位置,实际偏移的字节数是这个值*8得到的.因此,除了最后一个报文之外,其它报文的长度必须是8的整数倍(否则报文就不连续了).(组装包的先后顺序).

8位生存时间(Time To Live,TTL):数据报到达目的地的最大报文次数,一般是64.每次经过一个路由,TTL-=1,一直减到0还没有到达,那么就丢弃了,这个字段主要是为了防止路由循环.(小提示:在cmd窗口中使用tracert + 网络名指令)可以看到当前的网络路径是怎样的.

8位协议:表示上层协议的类型(传输层使用哪个协议).

16位头部校验和:使用CRC进行校验,来鉴别头部是否损坏.(不管载荷).

32位源地址和32位目标地址:表示发送端和接收端.(最关键的地方)采用的是点分十进制,3个点分成4个部分,每个部分1字节(0~255). -> IPv4. 希望每一个网络都有一个唯一的IP地址.(数值达到了2^32,约42亿9千万->可能不够用).

选项字段(不定长,最多40字节):略.

地址管理

定义:使用一套地址体系(IP地址),来描述互联网上每个设备所处的位置.(不仅仅是电脑/手机,路由器,服务器也有IP地址).

网段划分

网段划分是为了方便组网,因为比如公司,学校等人多,上网设备也多,网络环境复杂.

IP地址分为两个部分,网络号和主机号.

网络号:保证相互连接的两个网段具有不同的标识;

主机号:同一网段中,主机之间具有相同的网络号,但是必须由不同的主机号;

注意:两个相邻的局域网,网络号不能相同(一个路由器连接的网络就是相邻的).

不同的子网其实就是把网络号相同的主机放到一起;

如果在子网中新增一台主机,则这台主机的网络号和这个子网的网络号是一致的,但是主机号必须不能和子网中的其它主机重复.

通过合理设置主机号和网络号,就可以保证在相互连接的网络中,每台主机的IP地址都不相同.

那么问题来了,手动管理子网内的IP,是一个相当麻烦的事情.

有一种技术叫做DHCP,能够自动给子网内新增主机结点分配IP地址,避免了手动管理IP的不便

一般路由器都带有DHCP功能,因此路由器也可以看作是一个DHCP服务器.

过去(上古时期)曾经提出一种划分网络和主机号的方案(直接通过IP的前缀来起到设置网段的效果),把所有IP地址分为5类,如下图所示.

• A类 0.0.0.0到127.255.255.255
• B类 128.0.0.0到191.255.255.255
• C类 192.0.0.0到223.255.255.255
• D类 224.0.0.0到239.255.255.255
• E类 240.0.0.0到247.255.255.255 

随着互联网的快速发展,这种划分方案的局限性很快就体现了出来,大多数组织都申请B类网络地址,导致B类地址很快就消耗完了,而A类却浪费了大量的地址;(比较死板)

例如,申请了一个B类地址,理论上一个子网内能允许6w5k多个主机.A类地址的子网内的主机数中更多.

然而实际的网络架设中,不会存在一个子网内中有这么多个情况.因此大量的IP地址都被浪费掉了.

针对这种情况又提出了新的方案,称为CIDR:

引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;

子网掩码也是一个32位的正整数.通常用一段"0"来结尾;

将IP地址和子网掩码进行"按位与"操作,得到的结果就是网络号;

网络号和主机号的划分与这个IP地址是A类,B类,还是C类无关;

特殊的IP地址

将IP地址中的主机地址全部设为0(eg.192.168.0.0),就成为了网络号,代表这个局域网(这个IP比较特殊,不能分配给某个主机).

将IP地址中的主机地址全部设为1(eg.192.168.0.255),就成为了广播地址,用于给同一个链路中相互连接的所有主机发送数据包(UDP);  广播地址:往广播地址上发信息,局域网中所有设备都能收到(一对多的传输).典型场景:手机投屏,电脑投屏.(要求:必须是同一个局域网) .连上wifi点投屏键,就提示了可投屏设备(通过广播完成).

127.*的IP地址(本机)用于本机环回测试,通常是127.0.0.1.

IP地址的数量限制

我们知道,IP地址(IPv4)是一个4字节32位的正整数.那么一共有2的32次方个IP地址,大概是43亿左右.而TCP/IP规定,每个主机都需要有一个IP地址.

这意味着,一共有43亿台主机能接入网络吗?

实际上,由于一些特殊IP地址的存在,数量远不足43亿;另外IP地址并非是按照主机台数来配置的,而是每一个网卡都需要配置一个或多个IP地址.

CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率,减小了浪费,但是IP地址的绝对上限没有增加),仍然不是很够用.需要用三种方法来解决:

动态分配IP地址:只给接入网络的设备分配IP地址.因此同一个MAC地址的设备,每次接入互联网中,得到的IP地址是不一定相同的;

NAT技术(后面重点介绍);

IPv6:IPv6并不是IPv4的简单升级版,这是两个互不相干的协议,彼此并不兼容;IPv6用16字节128位来表示一个IP地址;但是目前IPv6还没有普及;(IPv6的报头和IPv4是不兼容的,引入IPv6就意味着当前网络设备(路由器不支持),就需要更换为IPv6的设备).

 私有IP地址和公网IP地址

如果一个组织内部组建局域网,IP地址只用于局域网中的通信,而不是直接连接到Internet上,理论上,使用任意的IP地址都可以,但是RFC1918规定了用于组建局域网的私有IP地址.

公网设备访问公网设备,没有问题,直接访问即可;

局域网设备访问局域网设备(同一局域网中),没有问题;

局域网设备访问局域网设备(不同局域网当中),不允许访问;

局域网访问公网就要对局域网设备进行IP地址转换;

公网访问局域网设备,不允许访问.

10.*,前8位是网络号,共16777216个地址;

172.16.到172.31.,前12位是网络号,共1048576个地址

192.168.*,前16位是网络号,共65536个地址;

包含在这个范围内的都成为私有IP,其余为全局IP(公网IP);

你的设备只要连接上路由器,此时路由器就会给你自动分配;

一个路由器LAN口连接的主机,都从属于当前这个路由器的子网中;

不同的路由器,子网IP实际上都是一样的(通常是192.168.1.1).子网内的主机IP地址不能重复.但是子网之间的IP地址就可以重复了.

每一个家用路由器,其实又作为运营商路由器的子网中一个结点,这样运营商路由器就会有很多级,最外层的运营商路由器,WAN口IP就是一个公网IP了.

子网内主机需要和外网进行通信时,路由器将IP首部中的IP地址进行替换(替换成WAN口IP),这样逐级替换,最终数据包中的IP地址成为一个公网IP.(NAT技术).

如果希望我们自己实现的服务器程序,能够在公网中被访问到,就需要把程序部署在一台具有外网IP的服务器上.这样的服务器可以自行购买.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452073.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于边缘计算的智能家居能源管理系统

一、项目背景 随着智能家居设备的普及,能源消耗问题日益凸显。为了更有效地管理家庭能源使用,减少浪费,并可能实现能源自给自足,我们提出了基于边缘计算的智能家居能源管理系统 该系统能够实时监控和分析家庭能源消耗数据&#xf…

java 线程安全介绍

所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。 那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量…

人工智能学习与实训笔记(一):零基础理解神经网络

目录 一、什么是神经网络模型 二、机器学习的类型 2.1 监督学习 2.2 无监督学习 2.3 半监督学习 2.4 强化学习 三、网络模型结构基础 3.1 单层网络 ​编辑 3.2 多层网络 3.3 非线性多层网络 四、 回归问题实操:使用Python和NumPy实现波士顿房价预测任务 一…

云计算基础-虚拟化概述

虚拟化概述 虚拟化是一种资源管理技术,能够将计算机的各种实体资源(如CPU、内存、磁盘空间、网络适配器等)予以抽象、转换后呈现出来并可供分割、组合为一个或多个逻辑上的资源。这种技术通过在计算机硬件上创建一个抽象层,将单台…

latex 论文表格

问题 latex 中想制作论文常见的表格&#xff0c;整理自己常用模板&#xff0c;与常用命令。 命令 调整行高 \renewcommand{\arraystretch}{1.3}调整列宽 \begin{tabular}{ m{3.1cm}<{\centering} m{0.8cm}<{\centering} m{0.8cm}<{\centering} m{0.8cm}<{\c…

政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(四)—— 函数方法

准备工作 这是Numpy数据处理的示例演绎系列文章的第四篇&#xff0c;我的前三篇文章为&#xff1a; 政安晨&#xff1a;【示例演绎】【Python】【Numpy数据处理】快速入门&#xff08;一&#xff09;https://blog.csdn.net/snowdenkeke/article/details/136125773政安晨&#…

【数据结构之排序算法】

数据结构学习笔记---010 数据结构之排序算法1、排序的基本概念及其运用1.1、常见排序算法的实现2、插入排序的实现2.1、直接插入排序2.1.1、直接插入排序的实现2.1.1.1、直接插入排序InsertSort.h2.1.1.2、直接插入排序InsertSort.c2.1.1.3、直接插入排序main.c2.1.2、直接插入…

BulingBuling - 《工作中的焦虑》 [ Anxiety at Work ]

工作中的焦虑 帮助团队建立复原力、处理不确定性和完成任务的8项策略 作者&#xff1a;阿德里安-戈斯蒂克、切斯特-埃尔顿和安东尼-戈斯蒂克 Anxiety at Work 8 Strategies to Help Teams Build Resilience, Handle Uncertainty, and Get Stuff Done By Adrian Gostick and…

真实世界不存在了?OpenAI开年王炸,文字生成视频Sora公布

今天&#xff0c;OpenAI在毫无预兆的情况下&#xff0c;悄然更新了网站首页&#xff0c;公布了文字生成视频模型Sora。 我快速在OpenAI的网站上翻看了下&#xff0c;并未找到使用的入口&#xff0c;只能先通过官方文档了解具体的情况。 We’re teaching AI to understand and s…

Vue核心基础3:计算属性和监视属性

1 计算属性 这边以姓名案例&#xff0c;来介绍计算属性 <body><div id"root"><!-- 姓&#xff1a;<input type"text" v-model:value"firstName"><br>名&#xff1a;<input type"text" v-model:value&…

人工智能学习与实训笔记(四):神经网络之自然语言处理

目录 六、自然语言处理 6.1 词向量 (Word Embedding) 6.1.1 词向量的生成过程 6.1.2 word2vec介绍 6.1.3 word2vec&#xff1a;skip-gram算法的实现 6.2 句向量 - 情感分析 6.2.1 LSTM (Long Short-Term Memory)介绍 6.2.2 基于飞桨实现的情感分析模型 6.3 BERT 六、自…

机器学习中7种常用的线性降维技术总结

上篇文章中我们主要总结了非线性的降维技术&#xff0c;本文我们来总结一下常见的线性降维技术。 1、Principal Component Analysis (PCA) Principal Component Analysis (PCA) 是一种常用的降维技术&#xff0c;用于将高维数据集转换为低维表示&#xff0c;同时保留数据集的…

【分享】JLINK的SW调试模式连线方式

大家知道&#xff0c;JLINK有2种调试模式&#xff1a;JTAG和SWD&#xff08;串行模式&#xff09;。 JTAG是常用模式&#xff0c;大家都熟悉、不废话了&#xff1b;如果使用SW模式&#xff0c;需要&#xff08;只需要&#xff09;4根连线&#xff0c;连接方式如下&#xff1a; …

紫微斗数双星组合:天机天梁在辰戌

文章目录 前言内容总结 前言 紫微斗数双星组合&#xff1a;天机天梁在辰戌 内容 紫微斗数双星组合&#xff1a;天机天梁在辰戌 性格分析 在紫微斗数命盘中&#xff0c;天梁星是一颗“荫星”&#xff0c;能够遇难呈祥&#xff0c;化解凶危&#xff0c;主寿&#xff0c;主贵。…

Sora和Pika,RunwayMl,Stable Video对比!网友:Sora真王者,其他都是弟

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

C++ “雪花算法“原理

C雪花算法并不是传统的数据结构与算法而是一种崭新的分布式算法 属于深层次C 本篇文章就来描述一下雪花算法 什么是雪花算法: 雪花算法&#xff08;Snowflake&#xff09;是Twitter开源的一种分布式唯一ID生成算法。它可以在不依赖于数据库等其他存储设施的情况下&#xff0c…

N-144基于微信小程序在线订餐系统

开发工具&#xff1a;IDEA、微信小程序 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 前端技术&#xff1a;vue、ElementUI、 Vant Weapp 服务端技术&#xff1a;springbootmybatisredis 本系统分微信小程序和…

自适应可爱卡通小人404页面模板

一款可爱卡通小人的404网页&#xff0c;这个模板其实也很简洁。页面只是一张图片和两个按钮&#xff08;返回首页、联系站长&#xff09;&#xff0c;卡通小人还是有几分可爱的&#xff0c;对于对404页面没有其他特殊需求的朋友来说&#xff0c;有这样一个页面足矣&#xff0c;…

Spring Resource

java.net.URL 类可用于访问带有各种URL前缀的资源&#xff0c;但是对于访问一些资源还是不够方便。比如不能从类路径或者相对于ServletContext来获取资源。而Spring 的Resource接口&#xff0c;则可以通过类路径等方式来访问资源。 1 Resource接口 图 Resource接口及方法 getI…

7.JS里表达式,if条件判断,三元运算符,switch语句,断点调试

表达式和语句的区别 表达式就是可以被求值的代码比如什么a 1 语句就是一段可以执行的代码比如什么if else 直接给B站的黑马程序员的老师引流一波总结的真好 分支语句 就是基本上所有的语言都会有的if else 语句就是满足不同的条件执行不同的代码&#xff0c;让计算机有条件…