java 线程安全介绍

news2024/12/25 12:15:15

6b36d31b76494befb83231e474aeb7a1.jpg所谓线程安全无非是要控制多个线程对某个资源的有序访问或修改。总结java的内存模型,要解决两个主要的问题:可见性和有序性。

 

  那么,何谓可见性? 多个线程之间是不能互相传递数据通信的,它们之间的沟通只能通过共享变量来进行。当一个共享变量在多个线程的工作内存中都有副本时,如果一个线程修改了这个共享变量,那么其他线程应该能够看到这个被修改后的值,这就是多线程的可见性问题。

  那么,什么是有序性呢 ?线程在引用变量时不能直接从主内存中引用(线程不能直接为主存中中字段赋值),如果线程工作内存中没有该变量,则会从主内存中拷贝一个副本到工作内存中,完成后线程会引用该副本。当同一线程再度引用该字段时,有可能重新从主存中获取变量副本,也有可能直接引用原来的副本,这就是有序性问题。

 

如何编写线程安全的代码

  1)常量始终是线程安全的,因为只存在读操作。

  2)对构造器的访问(new 操作)是线程安全的,因为每次都新建一个实例,不会访问共享的资源。

  3)局部变量是线程安全的。因为每执行一个方法,都会在独立的空间创建局部变量,它不是共享的资源。局部变量包括方法的参数变量。

  4)不使用静态变量、实例变量。

 

synchronized关键字

  保证了多个线程对于同步块是互斥的,并且保证了主存的一致性。

 

volatile关键字

  volatile是java提供的一种同步手段,只不过它是轻量级的同步,为什么这么说,因为volatile只能保证多线程的内存可见性,不能保证多线程的执行有序性。而最彻底的同步要保证有序性和可见性,例如synchronized。任何被volatile修饰的变量,都不拷贝副本到工作内存,任何修改都及时写在主存。因此对于Valatile修饰的变量的修改,所有线程马上就能看到,但是volatile不能保证对变量的修改是有序的。

  volatile存在的意义是,任何线程对a的修改,都会马上被其他线程读取到,因为直接操作主存,没有线程对工作内存和主存的同步。所以,volatile的使用场景是有限的,在有限的一些情形下可以使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:

  1)对变量的写操作不依赖于当前值。

  2)该变量没有包含在具有其他变量的不变式中

  volatile只保证了可见性。所以简单来说,volatile适合这种场景:一个变量被多个线程共享,线程直接给这个变量赋值。这时候使用volatile的开销将会非常小。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452071.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能学习与实训笔记(一):零基础理解神经网络

目录 一、什么是神经网络模型 二、机器学习的类型 2.1 监督学习 2.2 无监督学习 2.3 半监督学习 2.4 强化学习 三、网络模型结构基础 3.1 单层网络 ​编辑 3.2 多层网络 3.3 非线性多层网络 四、 回归问题实操:使用Python和NumPy实现波士顿房价预测任务 一…

云计算基础-虚拟化概述

虚拟化概述 虚拟化是一种资源管理技术,能够将计算机的各种实体资源(如CPU、内存、磁盘空间、网络适配器等)予以抽象、转换后呈现出来并可供分割、组合为一个或多个逻辑上的资源。这种技术通过在计算机硬件上创建一个抽象层,将单台…

latex 论文表格

问题 latex 中想制作论文常见的表格&#xff0c;整理自己常用模板&#xff0c;与常用命令。 命令 调整行高 \renewcommand{\arraystretch}{1.3}调整列宽 \begin{tabular}{ m{3.1cm}<{\centering} m{0.8cm}<{\centering} m{0.8cm}<{\centering} m{0.8cm}<{\c…

政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(四)—— 函数方法

准备工作 这是Numpy数据处理的示例演绎系列文章的第四篇&#xff0c;我的前三篇文章为&#xff1a; 政安晨&#xff1a;【示例演绎】【Python】【Numpy数据处理】快速入门&#xff08;一&#xff09;https://blog.csdn.net/snowdenkeke/article/details/136125773政安晨&#…

【数据结构之排序算法】

数据结构学习笔记---010 数据结构之排序算法1、排序的基本概念及其运用1.1、常见排序算法的实现2、插入排序的实现2.1、直接插入排序2.1.1、直接插入排序的实现2.1.1.1、直接插入排序InsertSort.h2.1.1.2、直接插入排序InsertSort.c2.1.1.3、直接插入排序main.c2.1.2、直接插入…

BulingBuling - 《工作中的焦虑》 [ Anxiety at Work ]

工作中的焦虑 帮助团队建立复原力、处理不确定性和完成任务的8项策略 作者&#xff1a;阿德里安-戈斯蒂克、切斯特-埃尔顿和安东尼-戈斯蒂克 Anxiety at Work 8 Strategies to Help Teams Build Resilience, Handle Uncertainty, and Get Stuff Done By Adrian Gostick and…

真实世界不存在了?OpenAI开年王炸,文字生成视频Sora公布

今天&#xff0c;OpenAI在毫无预兆的情况下&#xff0c;悄然更新了网站首页&#xff0c;公布了文字生成视频模型Sora。 我快速在OpenAI的网站上翻看了下&#xff0c;并未找到使用的入口&#xff0c;只能先通过官方文档了解具体的情况。 We’re teaching AI to understand and s…

Vue核心基础3:计算属性和监视属性

1 计算属性 这边以姓名案例&#xff0c;来介绍计算属性 <body><div id"root"><!-- 姓&#xff1a;<input type"text" v-model:value"firstName"><br>名&#xff1a;<input type"text" v-model:value&…

人工智能学习与实训笔记(四):神经网络之自然语言处理

目录 六、自然语言处理 6.1 词向量 (Word Embedding) 6.1.1 词向量的生成过程 6.1.2 word2vec介绍 6.1.3 word2vec&#xff1a;skip-gram算法的实现 6.2 句向量 - 情感分析 6.2.1 LSTM (Long Short-Term Memory)介绍 6.2.2 基于飞桨实现的情感分析模型 6.3 BERT 六、自…

机器学习中7种常用的线性降维技术总结

上篇文章中我们主要总结了非线性的降维技术&#xff0c;本文我们来总结一下常见的线性降维技术。 1、Principal Component Analysis (PCA) Principal Component Analysis (PCA) 是一种常用的降维技术&#xff0c;用于将高维数据集转换为低维表示&#xff0c;同时保留数据集的…

【分享】JLINK的SW调试模式连线方式

大家知道&#xff0c;JLINK有2种调试模式&#xff1a;JTAG和SWD&#xff08;串行模式&#xff09;。 JTAG是常用模式&#xff0c;大家都熟悉、不废话了&#xff1b;如果使用SW模式&#xff0c;需要&#xff08;只需要&#xff09;4根连线&#xff0c;连接方式如下&#xff1a; …

紫微斗数双星组合:天机天梁在辰戌

文章目录 前言内容总结 前言 紫微斗数双星组合&#xff1a;天机天梁在辰戌 内容 紫微斗数双星组合&#xff1a;天机天梁在辰戌 性格分析 在紫微斗数命盘中&#xff0c;天梁星是一颗“荫星”&#xff0c;能够遇难呈祥&#xff0c;化解凶危&#xff0c;主寿&#xff0c;主贵。…

Sora和Pika,RunwayMl,Stable Video对比!网友:Sora真王者,其他都是弟

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

C++ “雪花算法“原理

C雪花算法并不是传统的数据结构与算法而是一种崭新的分布式算法 属于深层次C 本篇文章就来描述一下雪花算法 什么是雪花算法: 雪花算法&#xff08;Snowflake&#xff09;是Twitter开源的一种分布式唯一ID生成算法。它可以在不依赖于数据库等其他存储设施的情况下&#xff0c…

N-144基于微信小程序在线订餐系统

开发工具&#xff1a;IDEA、微信小程序 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 前端技术&#xff1a;vue、ElementUI、 Vant Weapp 服务端技术&#xff1a;springbootmybatisredis 本系统分微信小程序和…

自适应可爱卡通小人404页面模板

一款可爱卡通小人的404网页&#xff0c;这个模板其实也很简洁。页面只是一张图片和两个按钮&#xff08;返回首页、联系站长&#xff09;&#xff0c;卡通小人还是有几分可爱的&#xff0c;对于对404页面没有其他特殊需求的朋友来说&#xff0c;有这样一个页面足矣&#xff0c;…

Spring Resource

java.net.URL 类可用于访问带有各种URL前缀的资源&#xff0c;但是对于访问一些资源还是不够方便。比如不能从类路径或者相对于ServletContext来获取资源。而Spring 的Resource接口&#xff0c;则可以通过类路径等方式来访问资源。 1 Resource接口 图 Resource接口及方法 getI…

7.JS里表达式,if条件判断,三元运算符,switch语句,断点调试

表达式和语句的区别 表达式就是可以被求值的代码比如什么a 1 语句就是一段可以执行的代码比如什么if else 直接给B站的黑马程序员的老师引流一波总结的真好 分支语句 就是基本上所有的语言都会有的if else 语句就是满足不同的条件执行不同的代码&#xff0c;让计算机有条件…

MATLAB知识点:nchoosek函数(★★★☆☆)用来计算组合数,也能返回从向量v中抽取k个元素的所有组合

讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章&#xff1a;课后习题讲解中拓展的函数 在讲解第三…

鸿蒙系统优缺点,能否作为开发者选择

凡是都有对立面&#xff0c;就直接说说鸿蒙的优缺点吧。 鸿蒙的缺点&#xff1a; 鸿蒙是从2019年开始做出来的&#xff0c;那时候是套壳Android大家都知晓。从而导致大家不看鸿蒙系统&#xff0c;套壳Android就是多次一举。现在鸿蒙星河版已经是纯血鸿蒙&#xff0c;但是它的…