人工智能学习与实训笔记(一):零基础理解神经网络

news2024/12/25 12:45:32

目录

 一、什么是神经网络模型

二、机器学习的类型

2.1 监督学习

2.2 无监督学习

2.3 半监督学习

2.4 强化学习

三、网络模型结构基础

3.1 单层网络

​编辑

3.2 多层网络

3.3 非线性多层网络

 四、 回归问题实操:使用Python和NumPy实现波士顿房价预测任务


 一、什么是神经网络模型

简而言之:神经网络模型是拟合现实问题的函数方程,通过输入得到输出。

只不过这个函数是用神经网络的参数来拟合的,神经网络的参数是通过大量数据的训练获得,训练效果越好,则函数越逼近现实情况,就可以用来解决各种实际任务。

一个简单的网络模型函数如下:

y=w1*x1 + w2*x2 + w3*x3... 

其中,y是函数值(模型输出的预测值),x1,x2, x3...是输入值(又叫特征值),w1, w2, w3...是网络参数。

机器学习最根本的目的在于训练出在某个问题上泛化能力强的模型。泛化能力强是指在某问题的所有数据上都能很好地反应输入和输出之间的关系,无论是训练数据,还是测试数据,还是任何属于该问题的未知数据

神经网络经常处理的问题包括:回归问题,图像分类问题,目标检测问题,自然语言处理,喜好推荐等等。

二、机器学习的类型

根据训练期间接受的监督数量和监督类型,可以将机器学习分为以下四种类型:监督学习、非监督学习、半监督学习和强化学习。

2.1 监督学习

在监督学习中,提供给算法的包含所需解决方案的训练数据,成为标签或标记。


简单地说,就是监督学习是包含自变量和因变量(有Y),同时可以用于分类和回归。下来常见的算法都是监督学习算法。

  • K近邻算法
  • 线性回归
  • logistic回归
  • 支持向量机(SVM)
  • 决策树和随机森林
  • 神经网络


2.2 无监督学习

无监督学习的训练数据都是未经标记的,算法会在没有指导的情况下自动学习。


简单地说,就是训练数据只有自变量没有因变量(就是没有Y)。

无监督学习的常见算法如下:

  • 聚类算法
    • K均值算法(K-means)
    • 基于密度的聚类方法(DBSCAN)
    • 最大期望算法
  • 可视化和降维
    • 主成分分析
    • 核主成分分析
  • 关联规则学习
    • Apriori
    • Eclat

比如说,我们有大量的购物访客的数据,包括一个月内的到达次数、购买次数、平均客单价、购物时长、购物种类、数量等,我们可以通过聚类算法,自动的把这些人分成几个类别,分类后,我们可以人工的把这些分类标记,如企业客户、家庭主妇等,也可以分成更细的分类。


另一种任务是降维,降维的目的在于不丢失太多的信息的情况下简化数据。方法之一就是讲多个特征合并为一个特征,特变是特征之间存在很大的相关性的变量。如汽车的里程和使用年限是存在很大的相关性的,所以降维算法可以将它们合并为一个表示汽车磨损的特征。这个过程就叫做特征提取。

另一个典型的无监督学习的是异常检测,如可以从检测信用卡交易中发现异常,并且这些异常我们实现没有标记的,算法可以自动发现异常。


2.3 半监督学习


有些算法可以处理部分标记的训练数据,通常是大量未标记的数据和少量标记的数据,这种成为半监督学习。

如照片识别就是很好的例子。在线相册可以指定识别同一个人的照片(无监督学习),当你把这些同一个人增加一个标签的后,新的有同一个人的照片就自动帮你加上标签了。


大多数半监督学习算法都是无监督和监督算法的结合。例如深度信念网络(DBN)基于一种相互堆叠的无监督式组件。

2.4 强化学习

强化学习是一个非常与众不同的算法,它的学习系统能够观测环境,做出选择,执行操作并获得回报,或者是以负面回报的形式获得惩罚。它必须自行学习什么是最好的策略,从而随着时间推移获得最大的回报。


例如,许多机器人通过强化学习算法来学习如何行走。AlphaGo项目也是一个强化学习的好例子。

三、网络模型结构基础

3.1 单层网络

(输入层) --w--> (输出层)


3.2 多层网络

(输入层) --w--> (隐含层) --w--> (隐含层) ... --> (输出层)

3.3 非线性多层网络

单层网络和多层网络默认只能表达线性变换,加入非线性激活函数后,可以表达非线性函数:

(输入层) --w--> (隐含层) --> (激活函数) --w--> (隐含层) --> (激活函数) ... --> (输出层)

加入非线性激励函数后,神经网络就有可能学习到平滑的曲线来分割平面,而不是用复杂的线性组合逼近平滑曲线来分割平面,使神经网络的表示能力更强了,能够更好的拟合目标函数。 这就是为什么我们要有非线性的激活函数的原因。

关于激活函数,可以参考:卷积神经网络中的激活函数sigmoid、tanh、relu_卷积神经网络激活函数_chaiky的博客-CSDN博客

 四、 回归问题实操:使用Python和NumPy实现波士顿房价预测任务

神经网络模型预测数据中比较常见的是回归问题,根据输入的数值得到输出的数值。使用Python来实现波士顿房价预测是AI课程里类似“hello world”的经典入门案例,主要有以下一些要点需注意:

1. 样本数据需要归一化,使得后续的神经网络模型参数可表征有效的权重。样本数据归一化是以列(特征值)为单位的。注意,在用测试集测试模型时,模型输出的函数预测值需要进行反归一化。


2. 数据集划分:80%用于训练,20%用于测试,训练和测试数据集必须分开,才能验证网络的有效性。


3. 影响波士顿房价的样本数据有13个特征值,每个特征值会有不同的权重,因此神经网络模型的可调参数为13个,分别代表不同特征值对最终房价影响的权重:y=w1*x1 + w2*x2 + ... +w13*x13


4. 损失函数是模型输出的值与样本数据中实际值偏差的一种表达函数,损失函数的选择既要考虑准确衡量问题的“合理性”,也还要考虑“易于优化求解”。


5. 训练过程就是通过不断调整网络模型参数,将损失函数的值降到最小(收敛)的过程, 损失函数的收敛需要通过梯度下降法来不断训练。以房价预测任务为例,影响房价的特征值有13个,因此我们需要调教的模型参数也是13个,这13个特征值和损失函数的值共同构成一个14维的空间,在这个空间中存在一个方向(13个参数构成向量决定这个方向)使得损失函数的值(预测值和实际值之偏差)下降最快。我们步进地将13个参数构成的向量朝此方向做出微调,再重新计算损失函数的值,如此往复,直到损失函数的值收敛趋于最小,则参数训练完成。

6. 数据集采用分批训练的方式,batch的取值会影响模型训练效果,batch过大,会增大内存消耗和计算时间,且训练效果并不会明显提升(每次参数只向梯度反方向移动一小步,因此方向没必要特别精确);batch过小,每个batch的样本数据没有统计意义,计算的梯度方向可能偏差较大。由于房价预测模型的训练数据集较小,因此将batch设置为10

       

Python源码 - 波士顿房价模型训练及测试:

# 导入需要用到的package
import numpy as np
import json
import matplotlib.pyplot as plt

def load_data():
    # 从文件导入数据
    datafile = './work/housing.data'
    data = np.fromfile(datafile, sep=' ')

    # 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数
    feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \
                      'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV' ]
    feature_num = len(feature_names)

    # 将原始数据进行Reshape,变成[N, 14]这样的形状
    data = data.reshape([data.shape[0] // feature_num, feature_num])

    # 将原数据集拆分成训练集和测试集
    # 这里使用80%的数据做训练,20%的数据做测试
    # 测试集和训练集必须是没有交集的
    ratio = 0.8
    offset = int(data.shape[0] * ratio)
    training_data = data[:offset]

    # 计算训练集的最大值,最小值(找的是每一列的极值)
    global maximums, minimums
    #maximums, minimums = data.max(axis=0), data.min(axis=0)
    maximums, minimums = training_data.max(axis=0), training_data.min(axis=0)
    #print("max:", maximums, "min:", minimums)

    # 对数据进行归一化处理,按列归一化处理
    for i in range(feature_num):
        data[:, i] = (data[:, i] - minimums[i]) / (maximums[i] - minimums[i])
    #print("归一化后的数据:\n", data)

    # 训练集和测试集的划分比例
    training_data = data[:offset]
    test_data = data[offset:]
    return training_data, test_data

# 获取数据
training_data, test_data = load_data()
x = training_data[:, :-1] #所有行+所有列(除了最后一列)
y = training_data[:, -1:] #所有行+最后一列

#w = [1, 2, 3] #shape = (3,)
#w = [[1], [2], [3]] #shape = (3,1)
#w = [[1,1], [2,2], [3,3]] #shape = (3,2)
#x = np.array(w)
# 查看数据
#print(x.shape)
#print(y.shape)

class Network(object):
    def __init__(self, num_of_weights):
        # 随机产生w的初始值
        # 为了保持程序每次运行结果的一致性,
        # 此处设置固定的随机数种子
        np.random.seed(0)
        self.w = np.random.randn(num_of_weights, 1)
        #print("init self.w", self.w)
        self.b = 0.
        
    def forward(self, x):
        z = np.dot(x, self.w) + self.b #x是[404,13]的矩阵(404行,13列), w是[13, 1]的矩阵(13行,1列),做点乘
        return z

    def loss(self, z, y):
        error = z - y
        #print(error.shape)
        cost = error * error
        cost = np.mean(cost)
        return cost

    def gradient(self, x, y):
        z = self.forward(x)
        gradient_w = (z-y)*x #梯度公式
        gradient_w = np.mean(gradient_w, axis=0) #对各列求均值
        gradient_w = gradient_w[:, np.newaxis]
        gradient_b = (z - y)
        gradient_b = np.mean(gradient_b)   
        return gradient_w, gradient_b

    def update(self, gradient_w, gradient_b, eta = 0.01):
        self.w = self.w - eta * gradient_w
        self.b = self.b - eta * gradient_b
        
    def train(self, x, y, iterations=100, eta=0.01):
        losses = []
        for i in range(iterations):
            z = self.forward(x)
            L = self.loss(z, y)
            gradient_w, gradient_b = self.gradient(x, y)
            self.update(gradient_w, gradient_b, eta)
            losses.append(L)
            if (i+1) % 10000 == 0:
               print('iter {}, loss {}'.format(i, L))
        return losses

# 运行模式一:每次用所有数据进行训练
train_data, test_data = load_data()
x = train_data[:, :-1]
#print("x.shape:", x.shape)
y = train_data[:, -1:]
# 创建网络
net = Network(13)
num_iterations=100000
# 启动训练
losses = net.train(x,y, iterations=num_iterations, eta=0.01)

# 画出损失函数的变化趋势
"""
plot_x = np.arange(num_iterations)
plot_y = np.array(losses)
plt.plot(plot_x, plot_y)
plt.show()
"""

#对数据做反归一化处理
def restore_data(d):
     d = d* (maximums[-1] - minimums[-1]) + minimums[-1]
     return round(d,2)

#用测试集做测试
print("测试集测试结果:")
x = test_data[:, :-1]
y = test_data[:, -1:]
z = net.forward(x)
print("样本数据", "\t", "预测数据")
print("-------------------------")
for i in range(x.shape[0]):
    print(restore_data(y[i][0]), "\t\t", restore_data(z[i][0]))



本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452070.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云计算基础-虚拟化概述

虚拟化概述 虚拟化是一种资源管理技术,能够将计算机的各种实体资源(如CPU、内存、磁盘空间、网络适配器等)予以抽象、转换后呈现出来并可供分割、组合为一个或多个逻辑上的资源。这种技术通过在计算机硬件上创建一个抽象层,将单台…

latex 论文表格

问题 latex 中想制作论文常见的表格&#xff0c;整理自己常用模板&#xff0c;与常用命令。 命令 调整行高 \renewcommand{\arraystretch}{1.3}调整列宽 \begin{tabular}{ m{3.1cm}<{\centering} m{0.8cm}<{\centering} m{0.8cm}<{\centering} m{0.8cm}<{\c…

政安晨:【示例演绎】【Python】【Numpy数据处理】快速入门(四)—— 函数方法

准备工作 这是Numpy数据处理的示例演绎系列文章的第四篇&#xff0c;我的前三篇文章为&#xff1a; 政安晨&#xff1a;【示例演绎】【Python】【Numpy数据处理】快速入门&#xff08;一&#xff09;https://blog.csdn.net/snowdenkeke/article/details/136125773政安晨&#…

【数据结构之排序算法】

数据结构学习笔记---010 数据结构之排序算法1、排序的基本概念及其运用1.1、常见排序算法的实现2、插入排序的实现2.1、直接插入排序2.1.1、直接插入排序的实现2.1.1.1、直接插入排序InsertSort.h2.1.1.2、直接插入排序InsertSort.c2.1.1.3、直接插入排序main.c2.1.2、直接插入…

BulingBuling - 《工作中的焦虑》 [ Anxiety at Work ]

工作中的焦虑 帮助团队建立复原力、处理不确定性和完成任务的8项策略 作者&#xff1a;阿德里安-戈斯蒂克、切斯特-埃尔顿和安东尼-戈斯蒂克 Anxiety at Work 8 Strategies to Help Teams Build Resilience, Handle Uncertainty, and Get Stuff Done By Adrian Gostick and…

真实世界不存在了?OpenAI开年王炸,文字生成视频Sora公布

今天&#xff0c;OpenAI在毫无预兆的情况下&#xff0c;悄然更新了网站首页&#xff0c;公布了文字生成视频模型Sora。 我快速在OpenAI的网站上翻看了下&#xff0c;并未找到使用的入口&#xff0c;只能先通过官方文档了解具体的情况。 We’re teaching AI to understand and s…

Vue核心基础3:计算属性和监视属性

1 计算属性 这边以姓名案例&#xff0c;来介绍计算属性 <body><div id"root"><!-- 姓&#xff1a;<input type"text" v-model:value"firstName"><br>名&#xff1a;<input type"text" v-model:value&…

人工智能学习与实训笔记(四):神经网络之自然语言处理

目录 六、自然语言处理 6.1 词向量 (Word Embedding) 6.1.1 词向量的生成过程 6.1.2 word2vec介绍 6.1.3 word2vec&#xff1a;skip-gram算法的实现 6.2 句向量 - 情感分析 6.2.1 LSTM (Long Short-Term Memory)介绍 6.2.2 基于飞桨实现的情感分析模型 6.3 BERT 六、自…

机器学习中7种常用的线性降维技术总结

上篇文章中我们主要总结了非线性的降维技术&#xff0c;本文我们来总结一下常见的线性降维技术。 1、Principal Component Analysis (PCA) Principal Component Analysis (PCA) 是一种常用的降维技术&#xff0c;用于将高维数据集转换为低维表示&#xff0c;同时保留数据集的…

【分享】JLINK的SW调试模式连线方式

大家知道&#xff0c;JLINK有2种调试模式&#xff1a;JTAG和SWD&#xff08;串行模式&#xff09;。 JTAG是常用模式&#xff0c;大家都熟悉、不废话了&#xff1b;如果使用SW模式&#xff0c;需要&#xff08;只需要&#xff09;4根连线&#xff0c;连接方式如下&#xff1a; …

紫微斗数双星组合:天机天梁在辰戌

文章目录 前言内容总结 前言 紫微斗数双星组合&#xff1a;天机天梁在辰戌 内容 紫微斗数双星组合&#xff1a;天机天梁在辰戌 性格分析 在紫微斗数命盘中&#xff0c;天梁星是一颗“荫星”&#xff0c;能够遇难呈祥&#xff0c;化解凶危&#xff0c;主寿&#xff0c;主贵。…

Sora和Pika,RunwayMl,Stable Video对比!网友:Sora真王者,其他都是弟

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

C++ “雪花算法“原理

C雪花算法并不是传统的数据结构与算法而是一种崭新的分布式算法 属于深层次C 本篇文章就来描述一下雪花算法 什么是雪花算法: 雪花算法&#xff08;Snowflake&#xff09;是Twitter开源的一种分布式唯一ID生成算法。它可以在不依赖于数据库等其他存储设施的情况下&#xff0c…

N-144基于微信小程序在线订餐系统

开发工具&#xff1a;IDEA、微信小程序 服务器&#xff1a;Tomcat9.0&#xff0c; jdk1.8 项目构建&#xff1a;maven 数据库&#xff1a;mysql5.7 前端技术&#xff1a;vue、ElementUI、 Vant Weapp 服务端技术&#xff1a;springbootmybatisredis 本系统分微信小程序和…

自适应可爱卡通小人404页面模板

一款可爱卡通小人的404网页&#xff0c;这个模板其实也很简洁。页面只是一张图片和两个按钮&#xff08;返回首页、联系站长&#xff09;&#xff0c;卡通小人还是有几分可爱的&#xff0c;对于对404页面没有其他特殊需求的朋友来说&#xff0c;有这样一个页面足矣&#xff0c;…

Spring Resource

java.net.URL 类可用于访问带有各种URL前缀的资源&#xff0c;但是对于访问一些资源还是不够方便。比如不能从类路径或者相对于ServletContext来获取资源。而Spring 的Resource接口&#xff0c;则可以通过类路径等方式来访问资源。 1 Resource接口 图 Resource接口及方法 getI…

7.JS里表达式,if条件判断,三元运算符,switch语句,断点调试

表达式和语句的区别 表达式就是可以被求值的代码比如什么a 1 语句就是一段可以执行的代码比如什么if else 直接给B站的黑马程序员的老师引流一波总结的真好 分支语句 就是基本上所有的语言都会有的if else 语句就是满足不同的条件执行不同的代码&#xff0c;让计算机有条件…

MATLAB知识点:nchoosek函数(★★★☆☆)用来计算组合数,也能返回从向量v中抽取k个元素的所有组合

讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 节选自第3章&#xff1a;课后习题讲解中拓展的函数 在讲解第三…

鸿蒙系统优缺点,能否作为开发者选择

凡是都有对立面&#xff0c;就直接说说鸿蒙的优缺点吧。 鸿蒙的缺点&#xff1a; 鸿蒙是从2019年开始做出来的&#xff0c;那时候是套壳Android大家都知晓。从而导致大家不看鸿蒙系统&#xff0c;套壳Android就是多次一举。现在鸿蒙星河版已经是纯血鸿蒙&#xff0c;但是它的…

云计算基础-云计算概念

云计算定义 云计算是一种基于互联网的计算方式&#xff0c;通过这种计算方式&#xff0c;共享的软硬件资源和信息可以按需提供给计算机和其他设备。云计算依赖资源共享以达成规模经济&#xff0c;类似基础设置(如电力网)。 云计算最基本的概念就是云加端&#xff0c;我们有一个…