【MATLAB】GA_BP神经网络回归预测算法

news2024/11/22 11:58:05

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

GA_BP神经网络回归预测算法结合了遗传算法(Genetic Algorithm, GA)和BP神经网络(Backpropagation Neural Network, BPNN),用于解决回归预测问题。下面将详细介绍该算法的原理:

  1. BP神经网络回归模型:

    • BP神经网络是一种前向人工神经网络,具有输入层、隐藏层和输出层。每个神经元都与下一层的所有神经元相连,其中权重和偏差是可学习的参数。

    • 模型使用反向传播算法来更新权重和偏差,以最小化预测输出与真实输出之间的误差。

  2. 遗传算法:

    • 遗传算法是一种通过模拟生物进化过程来搜索优化问题的全局最优解的算法。

    • 其中包含了选择、交叉和变异三个基本操作。

    • 选择:根据适应度函数选择某个个体作为父代,适应度越高的个体被选中的概率越大。

    • 交叉:将选中的两个个体的染色体进行交换或重组,生成新的个体。

    • 变异:对新个体的染色体进行随机改变,引入新的基因信息。

  3. GA_BP神经网络回归预测算法原理:

    • 步骤1:初始化种群,每个个体表示一个BP神经网络的权重和偏差。

    • 步骤2:对每个个体,使用BP神经网络进行训练,并计算其适应度,适应度函数可为预测误差的平方和。

    • 步骤3:使用选择操作,根据适应度函数选择父代个体。

    • 步骤4:使用交叉操作对父代个体进行交叉,生成新的个体。

    • 步骤5:使用变异操作对新个体进行变异,引入新的基因信息。

    • 步骤6:将新个体加入种群,并删除适应度较低的个体。

    • 步骤7:重复步骤2至步骤6,直到达到停止条件(如达到最大迭代次数)。

    • 步骤8:选择适应度最高的个体作为最终的解,即具有最优权重和偏差的BP神经网络。

通过遗传算法的选择、交叉和变异操作,GA_BP神经网络回归预测算法能够搜索到适应度最高的个体,即具有最优参数的BP神经网络模型。这样的组合使得该算法在处理回归预测问题时具有较好的性能和泛化能力。

2 出图效果

附出图效果如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1446049.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Verilog刷题笔记29

题目: Create a 100-bit binary ripple-carry adder by instantiating 100 full adders. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out. To encourage you to actually instantiate full adders, also output the ca…

python+django人力资源管理系统7w5x3

技术栈 后端:python 前端:vue.jselementui 框架:django Python版本:python3.7 数据库:mysql5.7 数据库工具:Navicat 开发软件:PyCharm .设计框架:Vue 1. 表现层:写多…

LocalAI 部署(主要针对 mac m2 启动)

LocalAI 部署 介绍 LocalAI 是免费的开源 OpenAI 替代方案。 LocalAI 充当 REST API 的直接替代品,与本地推理的 OpenAI API 规范兼容。 它无需 GPU,还有多种用途集成,允许您使用消费级硬件在本地或本地运行 LLM、生成图像、音频等等&#…

【北邮鲁鹏老师计算机视觉课程笔记】06 corner 局部特征

【北邮鲁鹏老师计算机视觉课程笔记】06 corner 局部特征 1 局部特征的任务牵引:全景拼接 ①提取特征 ②匹配特征 ③拼接图像 我们希望特征有什么特性? ①可重复性 ②显著性 ③计算效率和表达紧凑性 ④局部性 2 特征点检测的任务 3 角点 在角点&#…

EMC学习笔记(二十五)降低EMI的PCB设计指南(五)

线缆和连接器 1 差模和共模噪声2 串扰3 返回路径数量4 外部PCB -IO 布局建议5 防止噪音和静电放电 tips:资料主要来自网络,仅供学习使用。 设计良好的两层板,和大多数四层板,有最小的辐射。系统级的问题是由于将PCB与任何板外支持…

Linux第52步_移植ST公司的linux内核第4步_关闭内核模块验证和log信息时间戳_编译_并通过tftp下载测试

1、采用程序配置关闭“内核模块验证” 默认配置文件“stm32mp1_atk_defconfig”路径为“arch/arm/configs”; 使用VSCode打开默认配置文件“stm32mp1_atk_defconfg”,然后将下面的4条语句屏蔽掉,如下: CONFIG_MODULE_SIGy CONFIG_MODULE_…

机器学习之局部最优和全局最优

(1)局部最优,就是在函数值空间的一个有限区域内寻找最小值;而全局最优,是在函数值空间整个区域寻找最小值问题。 (2)函数局部最小点是它的函数值小于或等于附近点的点,但是有可能大于较远距离的点。 (3)全局最小点是那种它的函数值小于或等于…

【后端高频面试题--Linux篇】

🚀 作者 :“码上有前” 🚀 文章简介 :后端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬 后端高频面试题--Linux篇 Windows和Linux的区别?Unix和Linux有什么区别&#xff1f…

宿舍报修|宿舍报修小程序|基于微信小程序的宿舍报修系统的设计与实现(源码+数据库+文档)

宿舍报修小程序目录 目录 基于微信小程序的宿舍报修系统的设计与实现 一、前言 二、系统功能设计 三、系统实现 1、用户小程序功能模块 2、学生信息管理 3、维修人员管理 4、故障上报管理 5、论坛信息管理 四、数据库设计 1、实体ER图 2、具体的表设计如下所示&…

在Visual Studio中搭建Dynamo Python开发环境,效率飞一般的增长

最近在学习Dynamo中Python Script的用法,发现这个东西用起来太不友好了,不支持自动缩进,不支持自动填充和提示。用过Visual Studio做二开的都知道,在引用了Revit api以后,就可以自动填充和提示了。 本来英语就不好&am…

docker本地目录挂载

小命令 1、查看容器详情 docker inspect 容器名称 还是以nginx为例,上篇文章我们制作了nginx静态目录的数据卷,此时查看nginx容器时会展示出来(docker inspect nginx 展示信息太多,这里只截图数据卷挂载信息)&#…

《二叉树》——4(Leetcode题目练习)

目录 前言: 题目一:《对称二叉树》 思路: 题目二:《单值二叉树》 思路: 题目三:《检查两颗树是否相同》 思路: 题目四:《前序遍历》 思路: 题目五:《…

CTFshow web(php命令执行 55-59)

web55 <?php /* # -*- coding: utf-8 -*- # Author: Lazzaro # Date: 2020-09-05 20:49:30 # Last Modified by: h1xa # Last Modified time: 2020-09-07 20:03:51 # email: h1xactfer.com # link: https://ctfer.com */ // 你们在炫技吗&#xff1f; if(isset($_GET[…

CVE-2022-25578 漏洞复现

CVE-2022-25578 路由/admin/admin.php是后台&#xff0c;登录账号和密码默认是admin、tao&#xff0c;选择文件管理。 是否还记得文件上传中的.htaccess配置文件绕过发&#xff0c;在这个文件中加入一句AddType application/x-httpd-php .jpg&#xff0c;将所有jpg文件当作php…

【后端高频面试题--设计模式下篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;后端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 后端高频面试题--设计模式下篇 后端高频面试题--设计模式上篇设计模式总览模板方法模式怎么理解模…

大华智慧园区综合管理平台 deleteFtp RCE漏洞复现

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

【深度学习】基于多层感知机的手写数字识别

案例2&#xff1a;构建自己的多层感知机: MNIST手写数字识别 相关知识点: numpy科学计算包&#xff0c;如向量化操作&#xff0c;广播机制等 1 任务目标 1.1 数据集简介 ​ MNIST手写数字识别数据集是图像分类领域最常用的数据集之一&#xff0c;它包含60,000张训练图片&am…

13.rk3588搭建rknn环境

一、搭建Anaconda3环境 首先下载Anaconda3-2022.10-Linux-aarch64.sh&#xff0c;链接&#xff1a;https://pan.baidu.com/s/10oXSAaleAEoe6KaJ3IQyaw &#xff0c;提取码&#xff1a;mtag 。 下载后放入到自己的home文件夹下面&#xff0c;然后在该文件夹下运行 bash Anaco…

深入学习《大学计算机》系列之第1章 1.7节——图灵机的一个例子

一.欢迎来到我的酒馆 第1章 1.7节&#xff0c;图灵机的一个例子。 目录 一.欢迎来到我的酒馆二.图灵机2.1 艾伦-图灵简介2.2 图灵机简介 三.图灵机工作原理3.1 使用图灵机打印二进制数3.2 图灵机工作原理总结 四.总结 二.图灵机 本节内容主要介绍计算机科学之父——艾伦-图灵、…

vue核心技术(二)

◆ 指令补充 指令修饰符 通过 "." 指明一些指令 后缀&#xff0c;不同 后缀 封装了不同的处理操作 → 简化代码 v-bind 对于样式控制的增强 为了方便开发者进行样式控制&#xff0c; Vue 扩展了 v-bind 的语法&#xff0c;可以针对 class 类名 和 style 行内样式…