「Kafka」消费者篇

news2024/11/28 14:54:32

「Kafka」消费者篇

Kafka 消费方式

image-20240116165433159

Kafka 消费者工作流程

消费者总体工作流程

image-20240116165515510

新版本(0.9之后)的 offset 保存在 kafka 的 Topic 里,持久化到磁盘,可靠性有保障。

老版本(0.9之前)的 offset 保存在 Zookeeper 的 consumers 节点路径下。

为什么转移了呢?如果所有的消费者都把 offset 维护在 Zookeeper 中,那么所有的消费者都需要跟 Zookeeper 进行大量的交互,就会导致网络数据传输非常频繁,压力较大。所以存储在主题里更易于维护管理。

消费者组原理

消费者组

image-20240116165530845

image-20240116165606142

消费者组初始化流程

image-20240118162356720

消费者组详细消费流程

image-20240116165655861

  • 首先,kafka 需要和消费者组建立网络连接客户端:ConsumerNetworkClient
  • 消费者组发送消费请求 sendFetches,经过客户端,调用 send 方法发送请求到 kafka
    • 这里会设置 3 个参数:
      • fetch.min.bytes:每批次最小抓取大小,默认1字节
      • fetch.max.wait.ms:一批数据最小值未达到的超时时间,默认500ms
      • fetch.max.bytes:每批次最大抓取大小,默认50m
  • 通过回调方法 onSuccess 把对应的结果拉取过来,存储在 completedFetches 队列中
  • 消费者调用 fetchedRecords 方法从队列中抓取数据
    • max.poll.records:一次拉取数据返回消息的最大条数,默认500条
  • 再经过反序列化、拦截器,最后处理数据。
    • 在生产端也有拦截器,拦截器的作用:整个 kafka 集群不会处理数据,只会存数据,那么处理数据就可以在生产端和消费端的拦截器去做,而且拦截器可以方便的监控 kafka 的运行情况。这也是 kafka 高吞吐量的原因。
消费者重要参数

image-20240116165758310
image-20240116165808423

消费者 API

独立消费者案例(订阅主题)

  • 需求:创建一个独立消费者,消费 first 主题中数据。

    image-20240117172627901

    注意:在消费者 API 代码中必须配置消费者组 id。命令行启动消费者不填写消费者组 id 会被自动填写随机的消费者组 id。

  • 实现步骤

    • 创建包名:com.atguigu.kafka.consumer
    • 编写代码
      import org.apache.kafka.clients.consumer.ConsumerConfig;
      import org.apache.kafka.clients.consumer.ConsumerRecord;
      import org.apache.kafka.clients.consumer.ConsumerRecords;
      import org.apache.kafka.clients.consumer.KafkaConsumer;
      import org.apache.kafka.common.serialization.StringDeserializer;
      import java.time.Duration;
      import java.util.ArrayList;
      import java.util.Properties;
      
      class CustomConsumer {
          public static void main(String[] args) {
              // 0.创建消费者的配置对象
              Properties properties = new Properties();
      
              // 给消费者配置对象添加参数
              properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
      
              // 反序列化 必须
              properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
              properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
      
              // 配置消费者组id(组名任意起名)必须
              properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
      
              // 1.创建消费者对象
              KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
      
              // 2.订阅要消费的主题(可以消费多个主题)
              ArrayList<String> topics = new ArrayList<>();
              topics.add("first");
              kafkaConsumer.subscribe(topics);
              
              // 3.消费数据
              while (true) {
                  // 设置每过1s消费一批数据
                  ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
                  // 打印消费到的数据
                  for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                      System.out.println(consumerRecord);
                  }
              }
          }
      }
      
  • 测试

    • 在 IDEA 中执行消费者程序
    • 在 Kafka 集群控制台,创建 Kafka 生产者,并输入数据
      [atguigu@hadoop102 kafka]$ bin/kafka-console-producer.sh --bootstrap-server hadoop102:9092 --topic first
      >hello
      
    • 在 IDEA 控制台观察接收到的数据
      ConsumerRecord(topic = first, partition = 1, leaderEpoch = 3, offset = 0, CreateTime = 1629160841112, serialized key size = -1, serialized value size = 5, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = hello)
      

独立消费者案例(订阅分区)

  • 需求:创建一个独立消费者,消费 first 主题 0 号分区的数据。

    image-20240117173248868

  • 实现步骤

    • 代码编写
      import org.apache.kafka.clients.consumer.ConsumerConfig;
      import org.apache.kafka.clients.consumer.ConsumerRecord;
      import org.apache.kafka.clients.consumer.ConsumerRecords;
      import org.apache.kafka.clients.consumer.KafkaConsumer;
      import org.apache.kafka.common.serialization.StringDeserializer;
      import java.time.Duration;
      import java.util.ArrayList;
      import java.util.Properties;
      
      class CustomConsumer {
          public static void main(String[] args) {
              // 0.创建消费者的配置对象
              Properties properties = new Properties();
      
              // 给消费者配置对象添加参数
              properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
      
              // 反序列化 必须
              properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
              properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
      
              // 配置消费者组id(组名任意起名)必须
              properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
      
              // 1.创建消费者对象
              KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
      
              // 2.订阅某个主题的某个分区
      		ArrayList<TopicPartition> topicPartitions = new ArrayList<>();
      		topicPartitions.add(new TopicPartition("first", 0));
      		kafkaConsumer.assign(topicPartitions);
              
              // 3.消费数据
              while (true) {
                  // 设置每过1s消费一批数据
                  ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
                  // 打印消费到的数据
                  for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                      System.out.println(consumerRecord);
                  }
              }
          }
      }
      
  • 测试

    • 在 IDEA 中执行消费者程序

    • 在 IDEA 中执行生产者程序在控制台观察生成几个 0 号分区的数据

      for (int i = 0; i < 5; i++) {
      	kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i), new Callback() {
      		@Override
      		public void onCompletion(RecordMetadata metadata, Exception e) {
      			if (e == null) {
      			System.out.println("主题:" + metadata.topic() + "->" +
      							   "分区:" + metadata.partition());
      			} else {
      				e.printStackTrace();
      			}
      		}
      	});
      }
      
      first 0 381
      first 0 382
      first 2 168
      first 1 165
      first 1 166
      
    • 在 IDEA 控制台,观察接收到的数据,只能消费到 0 号分区数据表示正确image-20240123150417967

消费者组案例

  • 需求:测试同一个主题的分区数据,只能由一个消费者组中的一个消费。

    image-20240117173355009

  • 案例实操

    • 复制两份基础消费者的代码,在 IDEA 中同时启动,即可启动同一个消费者组中的三个消费者

    • 启动代码中的生产者发送消息,分别发送到了0、1、2,三个分区(如果只发送到一个分区,可以在发送时增加延迟代码 Thread.sleep(2); )

      image-20240123151338585

    • 在 IDEA 控制台即可看到三个消费者在消费不同分区的数据

      image-20240123151519663

      image-20240123151552094

      image-20240123151619870

一个分区的数据只由消费者组中的一个消费者消费。

生产经验—分区的分配以及再平衡

image-20240123152457835

Consumer Leader 就是根据分区分配策略,制定消费方案。

image-20240123151917279

image-20240123151936482

Range 以及再平衡

image-20240123153208242

Range 分区分配策略案例

  1. 修改主题 first 为 7 个分区

    [atguigu@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --alter --topic first --partitions 7
    

    注意:分区数可以增加,但是不能减少。

  2. 同时启动 3 个消费者:CustomConsumer、CustomConsumer1、CustomConsumer2 组成消费者组,组名都为“test”

  3. 启动 CustomProducer 生产者,发送 500 条消息,随机发送到不同的分区

    for (int i = 0; i < 500; i++) {
        kafkaProducer.send(new ProducerRecord<>("first", "atguigu " + i), new Callback() {
            @Override
            public void onCompletion(RecordMetadata metadata, Exception e) {
                if (e == null) {
                    System.out.println("主题:" + metadata.topic() + "->" +
                            "分区:" + metadata.partition());
                } else {
                    e.printStackTrace();
                }
            }
        });
    }
    
  4. 观察 3 个消费者分别消费哪些分区的数据

    image-20240123161435300

    image-20240123161446889

    符合预期。

Range 分区分配再平衡案例

  • 停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)
    • 1 号消费者:消费到 3、4 号分区数据。
    • 2 号消费者:消费到 5、6 号分区数据。
    • 0 号消费者的任务会整体被分配到 1 号消费者或者 2 号消费者。
    • 说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
  • 再次重新发送消息观看结果(45s 以后)
    • 1 号消费者:消费到 0、1、2、3 号分区数据。
    • 2 号消费者:消费到 4、5、6 号分区数据。
    • 说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。

RoundRobin 以及再平衡

image-20240123162024164

RoundRobin 分区分配策略案例

  1. 依次在 CustomConsumer、CustomConsumer1、CustomConsumer2 三个消费者代码中修改分区分配策略为 RoundRobin

    // 修改分区分配策略
    properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.RoundRobinAssignor");
    
  2. 重启 3 个消费者,重复发送消息的步骤,观看分区结果

    image-20240123162306808

    符合预期。

RoundRobin 分区分配再平衡案例

  • 停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)
    • 1 号消费者:消费到 2、5 号分区数据
    • 2 号消费者:消费到 4、1 号分区数据
    • 0 号消费者的任务会按照 RoundRobin 的方式,把数据轮询分成 0 、6 和 3 号分区数据,分别由 1 号消费者卓和 2 号消费者消费。
    • 说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
  • 再次重新发送消息观看结果(45s 以后)
    • 1 号消费者:消费到 0、2、4、6 号分区数据
    • 2 号消费者:消费到 1、3、5 号分区数据
    • 说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配。

Sticky 以及再平衡

**粘性分区定义:**可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。

粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化

  • 需求:设置主题为 first,7 个分区;准备 3 个消费者,采用粘性分区策略,并进行消费,观察消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。

  • 步骤

    • 修改分区分配策略为粘性 Sticky

      // 修改分区分配策略
      ArrayList<String> startegys = new ArrayList<>();
      startegys.add("org.apache.kafka.clients.consumer.StickyAssignor");
      
      properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, startegys);
      
    • 使用同样的生产者发送 500 条消息

      image-20240123163342787

      image-20240123163352648

      可以多重启几次观察,发现会尽量保持分区的个数近似划分分区。

      与 RoundRobin 策略区别:RoundRobin 是有序的,按照顺序轮询分配,而 Sticky 是随机分配的,并且在出现同一消费组内消费者出现问题的时候,会尽量保持原有分配的分区不变化。

Sticky 分区分配再平衡案例

  • 停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)
    • 1 号消费者:消费到 2、5、3 号分区数据。
    • 2 号消费者:消费到 4、6 号分区数据。
    • 0 号消费者的任务会按照粘性规则,尽可能均衡的随机分成 0 和 1 号分区数据,分别由 1 号消费者或者 2 号消费者消费。
    • 说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
  • 再次重新发送消息观看结果(45s 以后)
    • 1 号消费者:消费到 2、3、5 号分区数据。
    • 2 号消费者:消费到 0、1、4、6 号分区数据。
    • 说明:消费者 0 已经被踢出消费者组,所以重新按照粘性方式分配。出现同一消费组内消费者出现问题的时候,会尽量保持原有分配的分区不变化。

CooperativeSticky以及再平衡

上述三种分区分配策略均是基于 eager 协议,Kafka2.4.0开始引入 CooperativeSticky 策略——在不停止消费的情况下进行增量再平衡。

CooperativeSticky 与之前的 Sticky 虽然都是维持原来的分区分配方案,最大的区别是:Sticky仍然是基于 eager 协议,分区重分配时候,都需要 consumers 先放弃当前持有的分区,重新加入consumer group;而 CooperativeSticky 基于 cooperative 协议,该协议将原来的一次全局分区重平衡,改成多次小规模分区重平衡。

例如:一个Topic(T0,三个分区),两个 consumers(consumer1、consumer2) 均订阅 Topic(T0)

如果consumers订阅信息为:

consumer1T0P0、T0P2
consumer2T0P1

此时,新的 consumer3 加入消费者组,那么基于 eager 协议的分区重分配策略流程:

img

  1. consumer1、 consumer2 正常发送心跳信息到 Group Coordinator。
  2. 随着 consumer3 加入,Group Coordinator 收到对应的 Join Group 请求,Group Coordinator 确认有新成员需要加入消费者组。
  3. Group Coordinator 通知 consumer1 和 consumer2,需要 rebalance 了。
  4. consumer1 和 consumer2 放弃(revoke)当前各自持有的已有分区,重新发送 Join Group 请求到 Group Coordinator。
  5. Group Coordinator 依据指定的分区分配策略的处理逻辑,生成新的分区分配方案,然后通过 Sync Group 请求,将新的分区分配方案发送给 consumer1、consumer2、consumer3。
  6. 所有 consumers 按照新的分区分配,重新开始消费数据。

而基于 cooperative 协议的分区分配策略的流程:

图片

  1. consumer1、 consumer2 正常发送心跳信息到 Group Coordinator。
  2. 随着 consumer3 加入,Group Coordinator 收到对应的 Join Group 请求,Group Coordinator确认有新成员需要加入消费者组。
  3. Group Coordinator 通知 consumer1 和 consumer2,需要 rebalance 了。
  4. consumer1、consumer2 通过 Join Group 请求将已经持有的分区发送给 Group Coordinator。
    • 注意:并没有放弃(revoke)已有分区。
  5. Group Coordinator 取消 consumer1 对分区 p2 的消费,然后发送 sync group 请求给 consumer1、consumer2。
  6. consumer1、consumer2 接收到分区分配方案,重新开始消费。至此,一次 rebalance 完成。
  7. 当前 p2 也没有被消费,再次触发下一轮 rebalance,将 p2 分配给 consumer3 消费。

参考:Kafka消费者分区分配策略详解

该文把这 4 个策略写的都非常全面。

offset 位移

offset 的默认维护位置

image-20240123183709082

__consumer_offsets 主题里面采用 keyvalue 的方式存储数据。keygroup.id+topic+分区号value 就是当前 offset的值。每隔一段时间,kafka 内部会对这个 topic 进行 compact,也就是每个 group.id+topic+分区号 只保留最新数据。

消费 offset 案例

image-20240124153926615

image-20240124153900121

自动提交 offset

image-20240124151619080

image-20240124151627353

消费者自动提交 offset

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class CustomConsumerAutoOffset {
    public static void main(String[] args) {
        // 1. 创建 kafka 消费者配置类
        Properties properties = new Properties();
        // 2. 添加配置参数
        // 添加连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        // 配置消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");

        // 是否自动提交 offset,默认为true
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);

        // 提交 offset 的时间周期 1000ms,默认 5s
        properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 1000);

        // 3. 创建 kafka 消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

        // 4. 设置消费主题 形参是列表
        consumer.subscribe(Arrays.asList("first"));

        // 5. 消费数据
        while (true) {
            // 读取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            // 输出消息
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
        }
    }
}

手动提交 offset

image-20240124151653312

同步提交 offset

由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。

以下为同步提交 offset 的示例:

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class CustomConsumerByHandSync {
    public static void main(String[] args) {
        // 1. 创建 kafka 消费者配置类
        Properties properties = new Properties();
        // 2. 添加配置参数
        // 添加连接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // 配置序列化 必须
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        // 配置消费者组
        properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test");

        // 是否自动提交 offset
        properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);

        // 3. 创建 kafka 消费者
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);

        // 4. 设置消费主题 形参是列表
        consumer.subscribe(Arrays.asList("first"));

        // 5. 消费数据
        while (true) {
            // 读取消息
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1));
            // 输出消息
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value());
            }
            // 同步提交 offset
            consumer.commitSync();
        }
    }
}

异步提交 offset

虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。

以下为异步提交 offset 的示例,更换 KafkaConsumer 调用的 API 即可:

// 异步提交 offset
consumer.commitAsync();

指定 offset 消费

auto.offset.reset = earliest | latest | none,默认是 latest

当 Kafka 中没有初始偏移量(消费者组第一次消费)或服务器上不再存在当前偏移量时(例如该数据已被删除),该怎么办?

  1. earliest:自动将偏移量重置为最早的偏移量,--from-beginning

  2. latest(默认值):自动将偏移量重置为最新偏移量

  3. none:如果未找到消费者组的先前偏移量,则向消费者抛出异常

    image-20240124151851131

  4. 任意指定 offset 位移开始消费

    import org.apache.kafka.clients.consumer.*;
    import org.apache.kafka.common.TopicPartition;
    import org.apache.kafka.common.serialization.StringDeserializer;
    import java.time.Duration;
    import java.util.*;
    
    public class CustomConsumerSeek {
        public static void main(String[] args) {
            // 0 配置信息
            Properties properties = new Properties();
            // 连接
            properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
            // key value 反序列化
            properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2");
    
            // 1 创建一个消费者
            KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
    
            // 2 订阅一个主题
            ArrayList<String> topics = new ArrayList<>();
            topics.add("first");
            kafkaConsumer.subscribe(topics);
            Set<TopicPartition> assignment = kafkaConsumer.assignment();
            // 保证分区分配方案已经制定完毕
            // 消费者初始化流程:
            // 1)消费者跟coordinator汇报,我要加入消费者组
            // 2)然后coordinator会选择一个Consumer Leader,把各Topic的情况给到它
            // 3)Consumer Leader会制定分区分配方案,发给coordinator
            // 4)coordinator再把分区分配方案下发给所有Consumer
            // 所以需要等待一段时间。
            while (assignment.size() == 0) {
                kafkaConsumer.poll(Duration.ofSeconds(1));
                // 获取消费者分区分配信息(有了分区分配信息才能开始消费)
                assignment = kafkaConsumer.assignment();
            }
            // 遍历所有分区,并指定 offset 从 1700 的位置开始消费
            for (TopicPartition tp : assignment) {
                kafkaConsumer.seek(tp, 1700);
            }
            // 3 消费该主题数据
            while (true) {
                ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
                for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                    System.out.println(consumerRecord);
                }
            }
        }
    }
    

    注意:每次执行完,需要修改消费者组名。

指定时间消费

  • 需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。
    • 例如要求按照时间消费前一天的数据,怎么处理?
  • 操作步骤:
    import org.apache.kafka.clients.consumer.*;
    import org.apache.kafka.common.TopicPartition;
    import org.apache.kafka.common.serialization.StringDeserializer;
    import java.time.Duration;
    import java.util.*;
    
    public class CustomConsumerSeekTime {
        public static void main(String[] args) {
            // 0 配置信息
            Properties properties = new Properties();
            // 连接
            properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
            // key value 反序列化
            properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
            properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2");
    
            // 1 创建一个消费者
            KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);
    
            // 2 订阅一个主题
            ArrayList<String> topics = new ArrayList<>();
            topics.add("first");
            kafkaConsumer.subscribe(topics);
            Set<TopicPartition> assignment = kafkaConsumer.assignment();
            // 保证分区分配方案已经制定完毕
            while (assignment.size() == 0) {
                kafkaConsumer.poll(Duration.ofSeconds(1));
                // 获取消费者分区分配信息(有了分区分配信息才能开始消费)
                assignment = kafkaConsumer.assignment();
            }
            // 希望把时间转换为对应的offset
            Map<TopicPartition, Long> timestampToSearch = new HashMap<>();
            // 封装集合存储,每个分区对应一天前的数据
            for (TopicPartition topicPartition : assignment) {
                timestampToSearch.put(topicPartition, System.currentTimeMillis() - 24 * 3600 * 1000);
            }
            // 获取从 1 天前开始消费的每个分区的 offset
            Map<TopicPartition, OffsetAndTimestamp> offsets = kafkaConsumer.offsetsForTimes(timestampToSearch);
            // 遍历每个分区,对每个分区设置消费时间。
            for (TopicPartition topicPartition : assignment) {
                OffsetAndTimestamp offsetAndTimestamp = offsets.get(topicPartition);
                // 根据时间指定开始消费的位置
                if (offsetAndTimestamp != null) {
                    kafkaConsumer.seek(topicPartition, offsetAndTimestamp.offset());
                }
            }
            // 3 消费该主题数据
            while (true) {
                ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));
                for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                    System.out.println(consumerRecord);
                }
            }
        }
    }
    

重复消费和漏消费

  • 重复消费:已经消费了数据,但是 offset 没提交。
  • 漏消费:先提交 offset 后消费,有可能会造成数据的漏消费。

image-20240124152026551

生产经验—消费者事务

image-20240124152051546

生产经验—数据积压(消费者如何提高吞吐量)

image-20240204113119041

image-20240124152125147

生产者提高吞吐量:

  • batch.size:默认 16k
  • linger.ms:默认 0ms
  • compression.type:数据压缩,默认为 None
  • buffer.memory:RecordAccumlator 缓冲区大小,默认 32M

消费者提高吞吐量:

  • 增加 Topic 的分区数,同时增加消费者数量
  • max.poll.records:提高每批次拉取的数量,默认500条

在生产环境中合理调整这几个参数,达到最大化吞吐量。


笔记整理自b站尚硅谷视频教程:【尚硅谷】Kafka3.x教程(从入门到调优,深入全面)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1432655.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

arcpy高德爬取路况信息数据json转shp

最近工作上遇到爬取的高德路况信息数据需要在地图上展示出来&#xff0c;由于json数据不具备直接可视化的能力&#xff0c;又联想到前两个月学习了一点点arcpy的知识&#xff0c;就花了一些时间去写了个代码&#xff0c;毕竟手动处理要了老命了。 1、json文件解读 json文件显…

【Python之Git使用教程001】Git简介与安装

一、简介 Git其实就是一个分布式版本的控制系统&#xff0c;在分布式版本的控制系统&#xff0c;大家都拥有一个完整的版本库&#xff0c;不需要联网也可以提交修改&#xff0c;所以中心服务器就显得不那么重要。由于大家都拥有一个完整的版本库&#xff0c;所有只需要把各自的…

Matplotlib热力图的创意绘制指南【第54篇—python:Matplotlib热力图】

文章目录 Matplotlib热力图的创意绘制指南1. 简介2. 基本热力图3. 自定义颜色映射4. 添加注释5. 不同形状的热力图6. 分块热力图7. 多子图热力图8. 3D热力图9. 高级颜色映射与颜色栏设置10. 热力图的动态展示11. 热力图的交互性12. 标准化数据范围13. 导出热力图 总结&#xff…

【C++】- 继承(继承定义!!基本格式!切片概念!!菱形继承详解!)

继承 了解继承继承的定义基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承和友元菱形继承和菱形虚拟继承 了解继承 继承机制是面向对象程序设计使代码可以复用的最重要的手段&#xff0c;它允许程序员在保 持原有类特性的基础上进行扩展&#xff0c;增加功能&a…

【lesson10】高并发内存池细节优化

文章目录 大于256KB的大块内存申请问题大于256KB的大块释放申请问题使用定长内存池脱离使用new释放对象时优化为不传对象大小完整版代码Common.hObjectPool.hThreadCache.hThreadCache.cppConcurrentAlloc.hCentralCache.hCentralCache.cppPageCache.hPageCache.cpp 大于256KB的…

centos 7.7 离线安装docker

centos 7.7 离线安装docker Index of linux/static/stable/x86_64/https://download.docker.com/linux/static/stable/x86_64/ 【1】离线下载docker 压缩包上传至 /usr/local 目录&#xff0c;解压缩&#xff0c;并复制到 /usr/bin/ 目录中。 cd /usr/local/tar -zxvf docke…

C++:CSDN云服务器3.0

废话一会儿 终于&#xff0c;CSDN云服务器又更了 事情是这样的&#xff1a; 我的一个室友&#xff0c;知道了我的CSDN云服务器&#xff0c;觉得感兴趣&#xff0c;就让我开发一个3.0版本的。我媜了好久好久&#xff0c;搞出来个怪名堂&#xff0c;刷块刷得不行。他表示这简直…

List的模拟实现 迭代器

———————————————————— list与vector相比&#xff0c;插入、删除等操作实现的成本非常低&#xff0c;如果在C语言阶段熟悉理解过链表&#xff0c;那么现在实现起来list就显得比较简单&#xff0c;可以说操作层面上比vector更简洁&#xff0c;因为list没有扩…

Leetcode—38. 外观数列【中等】

2024每日刷题&#xff08;111&#xff09; Leetcode—38. 外观数列 实现代码 class Solution { public:string countAndSay(int n) {string ans "1";while(--n) {string next;for(int i 0; i < ans.size(); i) {int cnt 1;char c ans[i];while(i 1 < an…

platfrom tree架构下实现3-Wire驱动(DS1302)

目录 概述 1 认识DS1302 1.1 DS1302 硬件电路 1.2 操作DS1302 1.3 注意要点 2 IO引脚位置 3 添加驱动节点 3.1 更新内核.dts 3.2 更新板卡.dtb 4 驱动程序实现 4.1 编写驱动程序 4.2 编写驱动程序的Makefile 4.3 安装驱动程序 5 验证驱动程序 5.1 编写测试程序…

机器学习数据预处理--连续变量分箱

文章目录 原理概念等宽分箱等频分箱聚类分箱有监督分箱 原理概念 连续变量分箱即对连续型字段进行离散化处理&#xff0c;也就是将连续型字段转化为离散型字段。连续字段的离散过程如下所示&#xff1a; 连续变量的离散过程也可以理解为连续变量取值的重新编码过程&#xff0c…

Qt环境搭建+简单程序实现

Qt是什么 Qt是一个跨平台的C图形用户界面应用程序框架。 框架的本质就是一群大佬发明的让菜鸡写出来的代码也也比较规范 也就是限制程序员的自由&#xff0c;让程序员写出来的代码规范。 库和框架有相似性。 库是被程序员调用的&#xff0c;&#xff08;程序员是主体&…

PyTorch 2.2 中文官方教程(二)

在 YouTube 上介绍 PyTorch PyTorch 介绍 - YouTube 系列 原文&#xff1a;pytorch.org/tutorials/beginner/introyt.html 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 介绍 || 张量 || 自动微分 || 构建模型 || TensorBoard 支持 || 训练模型 || 模型理解 作者&a…

05 - python操作JSON

JSON认识 JSON&#xff0c;一种轻量级的文本数据交换格式&#xff0c;比XML更小更快&#xff0c;更易解析&#xff0c;爬虫经常要获取接口数据&#xff0c;接口数据就是JSON格式的。 格式示例 # 格式1&#xff1a;JSON 对象 {"name": "李嘉图", "a…

pytorch索引和切片

目录 1. 按索引方式取数据2. 以python切片方式取数据3. 指定index取数据4. ...代表除其前后指定维度外的所有维度5. masked_select() 使用掩码选择元素6. take 矩阵打平后选取 1. 按索引方式取数据 a[0,0,2,4] 其中0&#xff0c;0&#xff0c;2&#xff0c;4是索引从0开始 2. …

3.0 Hadoop 概念

本章着重介绍 Hadoop 中的概念和组成部分&#xff0c;属于理论章节。如果你比较着急可以跳过。但作者不建议跳过&#xff0c;因为它与后面的章节息息相关。 Hadoop 整体设计 Hadoop 框架是用于计算机集群大数据处理的框架&#xff0c;所以它必须是一个可以部署在多台计算机上…

灵活应对:策略模式在软件设计中的应用

策略模式是一种行为型设计模式&#xff0c;它允许定义一系列算法&#xff0c;并将每个算法封装起来&#xff0c;使它们可以互换使用。策略模式让算法的变化独立于使用算法的客户端&#xff0c;使得在不修改原有代码的情况下切换或扩展新的算法成为可能。 使用策略模式的场景包…

无人机遥感技术在地质灾害监测应用分析,多旋翼无人机应急救援技术探讨

地质灾害是指在地球的发展演变过程中&#xff0c; 由各种自然地质作用和人类活动所形成的灾害性地质事件。给人民的生命和财产安全带来严重威胁&#xff0c;因此有必要开展地质灾害预测预报、灾害应急和风险区划 遥感技术的快速发展为我们提供了一种获取实时灾害信息的可靠手段…

使用WPS制作三线表

点击边框和底纹点击1、2、3、4并且应用于表格点击确定 再次选中表格点击右键表格属性选择边框和底纹 选中表格第一行右键点击表格属性选择边框和底纹 如果表格中存在虚线

离线数仓-数据治理

目录 一、前言 1.1 数据治理概念 1.2 数据治理目标 1.3 数据治理要解决的问题 1.3.1 合规性 元数据合规性 数据质量合规性 数据安全合规性 1.3.2 成本 存储资源成本 计算资源成本 二、数据仓库发展阶段 2.1 初始期 2.2 扩张期 2.3 缓慢发展期 2.4 变革期 三、…