Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

news2024/9/24 3:21:28

1. 使用入口

  • DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16OptimizerWithFloat16Params
def get_megatron_optimizer(model,
                           no_weight_decay_cond=None,
                           scale_lr_cond=None,
                           lr_mult=1.0):
        ...
        # Megatron optimizer.
        opt_ty = DistributedOptimizer \
            if args.use_distributed_optimizer else \
            Float16OptimizerWithFloat16Params
        return opt_ty(optimizer,
                      args.clip_grad,
                      args.log_num_zeros_in_grad,
                      params_have_main_grad,
                      args.use_contiguous_buffers_in_local_ddp,
                      args.fp16,
                      args.bf16,
                      args.params_dtype,
                      grad_scaler,
                      model)
  • 相关的Optimizer的使用参考【Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1】

2. 初始化init源码说明

在这里插入图片描述

  • 初始化的过程很大程度对应的上图grad buffer分片的实现,对应init函数如下:
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 fp16, bf16, params_dtype, grad_scaler, models):
  • init时会通过build_model_gbuf_range_map函数先创建grad buffer的范围映射,也就是对应图中的world_index/local_index/param_index三个。这里的self.models是一个list类型,对于使用了interleave流水线方式的训练来说,这里的self.models中会保存多份model, 其余情况list中只有一个元素。
        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
  • build_model_gbuf_range_map会依次按grad buffer中类型来进行range的初始化build_model_gbuf_range。这里定义了一个单独的Range类。

    @classmethod
    def build_model_gbuf_range_map(cls, model):
        """
        Create param-to-grad-buffer mappings, for grad buffer data types
        within a specific virtual model.
        """
        return {
            dtype : cls.build_model_gbuf_range(model, dtype)
            for dtype in model._grad_buffers
        }
        
class Range:
    """
    A range represents a start and end points for indexing a shard
    from a full tensor.
    """
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Range(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)
    def __len__(self):
        return self.end - self.start
  • build_model_gbuf_range初始化range的流程如下:
    • 获取DP的rank,计算单个Grad buffer切片的大小
    • 保存当前rank的world range和local range, 分别对应world index和local index
    • 计算param的range范围,对应param index
    • 返回当前rank的相关range范围
    @classmethod
    def build_model_gbuf_range(cls, model, dtype):
        # 获取DP的rank
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # 计算单个Grad buffer切片的大小
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))

        # 跟据DDP的rank总数,分别计算每个rank对应的全局range
        gbuf_world_all_ranges = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)
            
        # 保存当前rank的world range和local range
        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()
        
        # 计算param的range范围
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)
        
        # Group into dict.
        data = {
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
        }

        return data
  • 接着会根据当前rank相关的Range内容self.model_gbuf_ranges调用build_model_param_gbuf_map函数,主要作用是创建model_gbuf_ranges的逆映射,保存param->(modex_index, type)的映射。
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)
        ...
            
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        """
        Create a reverse of the model_gbuf_ranges, for referencing in
        opposite direction.
        """
        param_gbuf_map = {}
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map
  • self.build_model_param_gbuf_map之后是初始化Optimizer对应的local group range,Optimizer原本有param_groups包括多个参数组,这里build_optimizer_group_ranges为了创建param参数到group_index的map映射,也就是<model_parameter:group_index>;self.build_model_param_gbuf_map最后对每个group_range中增加新的orig_grouporig_group_idx两个key,原来group_range初始化的时候只有params一个key
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        # Optimizer ranges.
        self.model_param_group_index_map, self.opt_group_ranges = \
            self.build_optimizer_group_ranges(self.optimizer.param_groups,
                                              self.model_gbuf_ranges)
        ...

    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
        # 获取param_groups中组的个数
        num_groups = len(param_groups)
        
        # 创建全局的参数到group_index的map映射,也就是<model_parameter:group_index>
        world_param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                world_param_group_map[param] = group_index

        # 创建当前rank的local_param_group_map, local_param_group_map是param与(group_index, group_params_len)的映射, local_param_group_map虽然返回了但后面没用
        local_param_group_map = {}
        group_ranges = [ {"params": []} for _ in param_groups ]
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
                    group_index = world_param_group_map[param]
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
                    local_param_group_map[param] = \
                        (group_index, len(group_range["params"]) - 1)
        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
            group_range["orig_group_idx"] = param_groups[group_index]

        return local_param_group_map, group_ranges
  • 在初始化Optimizer之后,是通过创建self.build_model_and_main_param_groups创建optimizer step要用到的main parameter groups, 这里的group一方面是要进行reduce和gather通信操作,另一方面是被优化器用于梯度的更新操作。
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        # Allocate main param shards.
        (
            self.model_float16_groups,
            self.model_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)
        ...

  • self.build_model_and_main_param_groups的实现主要是关于fp32/fp16/bf16三种类型训练时优化器内的显存分配。
    @classmethod
    def build_model_and_main_param_groups(cls,
                                          model_gbuf_ranges,
                                          param_gbuf_map,
                                          opt_group_ranges):
        ...
        # 保存原本fp16类型param
        model_float16_groups = []
        # 保存原本fp32类型param
        model_fp32_groups = []
        # 保存原本fp16类型param的切片
        shard_float16_groups = []
        # 保存原本fp32类型param的切片
        shard_fp32_groups = []
        # 保存原本fp16类型param的fp32类型param的副本
        shard_fp32_from_float16_groups = []
        
        # 分配每个group的param参数切片
        for group_index, group_range in enumerate(opt_group_ranges):
            for model_param in group_range["params"]:
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:
                    # 如果是fp16/bf16类型参数,clone为fp32类型的切片.
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param = shard_model_param.clone().float()
                    ...
                    # 添加到group中
                    model_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)
                elif model_param.type() == 'torch.cuda.FloatTensor':
                    # 如果是fp32类型参数,不进行clone,直接引用
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
                    model_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
                    ...
            # 更新优化器的参数
            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]
        return (
            model_float16_groups,
            model_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )
  • 在Optimizer init中,接下来是初始化self.param_buffers,这里的self.param_buffers是DDP模型的grad buffer的view示图,跟grad buffer共享存储,但是用自己的数据类型;最后更新优化器的param_groups。
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        # 初始化self.param_buffers
        self.param_buffers = []
        for model_index, model in enumerate(self.models):
            current_param_buffers = {}
            for dtype, grad_buffer in model._grad_buffers.items():
                # 获取存储,这里是兼容的写法.
                try:
                    storage = grad_buffer.data.storage()._untyped()
                except:
                    storage = grad_buffer.data.storage().untyped()
                # 基于grad_buffer的storage创建param_buffer类型,这里的params_dtype是参数类型; 这里的torch.tensor没有autograd的历史。
                param_buffer = torch.tensor(
                    storage,
                    dtype = params_dtype,
                    device = grad_buffer.data.device)
                param_buffer = param_buffer[:grad_buffer.numel_padded]
                # 这里的dtype是grad_buffer的类型
                current_param_buffers[dtype] = param_buffer
            self.param_buffers.append(current_param_buffers)
        
        # 最后更新优化器的param_groups
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_ranges ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

3. 参考

  • Megatron-LM源码系列(六):Distributed-Optimizer分布式优化器实现Part1
  • NVIDIA/Megatron-LM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1430600.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QSlider使用笔记

最近做项目使用到QSlider滑动条控件&#xff0c;在使用过的过程中&#xff0c;发现一个问题就是点滑动条上的一个位置&#xff0c;滑块并没有移动到鼠标点击的位置&#xff0c;体验感很差&#xff0c;于是研究了下&#xff0c;让鼠标点击后滑块移动到鼠标点击的位置。 1、event…

this指针详细总结 | static关键字 | 静态成员

文章目录 1.this指针引入2.this指针的特性3.静态成员3.1.C语言中static的基本用法3.2.C中的static关键字 1.this指针引入 class student { public:student(const string& name){ _name name; }void print(){// _name<>this->_name<>(*this)._name// 说一下…

【Linux】打包压缩跨系统/网络传输文件常用指令完结

Hello everybody!在今天的文章中我会把剩下的3-4个常用指令讲完&#xff0c;然后开始权限的讲解。那废话不多说&#xff0c;咱们直接进入正题&#xff01; 1.zip/unzip&tar命令 1.zip/unzip 在windows系统中&#xff0c;经常见到带有zip后缀的文件。那个东西就是压缩包。…

携程网首页案例制作

背景线性渐变 语法&#xff1a; background&#xff1a;linear-gradient&#xff08;起始方向&#xff0c;颜色1&#xff0c;颜色2&#xff0c;...&#xff09;&#xff1b; background&#xff1a;-webkit-linear-gradient&#xff08;left&#xff0c;red&#xff0c;blue&a…

使用Python的turtle模块实现简单的烟花效果

import turtle import random import math# 设置窗口大小 width, height 800, 600 screen turtle.Screen() screen.title("Fireworks Explosion") screen.bgcolor("black") screen.setup(width, height)# 定义烟花粒子类 class Particle(turtle.Turtle):…

ES6-let

一、基本语法 ES6 中的 let 关键字用于声明变量&#xff0c;并且具有块级作用域。 - 语法&#xff1a;let 标识符;let 标识符初始值; - 规则&#xff1a;1.不能重复声明let不允许在相同作用域内重复声明同一个变量2.不存在变量提升在同一作用域内&#xff0c;必须先声明才能试…

论文阅读-一种用于大规模分布式文件系统中基于深度强化学习的自适应元数据管理方案

名称&#xff1a; An Adaptive Metadata Management Scheme Based on Deep Reinforcement Learning for Large-Scale Distributed File Systems I. 引言 如今&#xff0c;大型集群文件系统的规模已达到PB甚至EB级别&#xff0c;由此产生的数据呈指数级增长。系统架构师不断设…

算法学习——华为机考题库7(HJ41 - HJ45)

算法学习——华为机考题库7&#xff08;HJ41 - HJ45&#xff09; HJ41 称砝码 描述 现有n种砝码&#xff0c;重量互不相等&#xff0c;分别为 m1,m2,m3…mn &#xff1b; 每种砝码对应的数量为 x1,x2,x3…xn 。现在要用这些砝码去称物体的重量(放在同一侧)&#xff0c;问能称…

STM32--揭秘中断(简易土货版)

抢占优先级响应优先级 视频学习--中断​​​​​​​

数据结构----队列(Queue)的概念、队列的使用、模拟实现队列、循环队列、模拟实现循环队列、双端队列、模拟实现双端队列

文章目录 1 概念2 队列的使用3 队列模拟实现4 循环队列4.1 循环队列 概念4.1 循环队列模拟实现 5. 双端队列 (Deque)6 用队列实现栈7 用栈实现队列 1 概念 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有…

会计的记账凭证

目录 一. 记账凭证的填制与审核1.1 收付款凭证1.2 转账凭证1.3 单式记账凭证 二. 记账凭证的编号 \quad 一. 记账凭证的填制与审核 \quad \quad 1.1 收付款凭证 \quad 注意︰ 凡是涉及货币资金之间收付款的业务如将库存现金存入银行或从银行提取现金等类经济业务。在实际工作中…

macOS的设置与常用软件(含IntelliJ IDEA 2023.3.2 Ultimate安装,SIP的关闭与开启)

目录 1 系统设置1.1 触控板1.2 键盘 2 软件篇2.1 [科学上网](https://justmysocks5.net/members/)2.1 [安装Chrome浏览器](https://www.google.cn/chrome/index.html)2.2 [安装utools](https://www.u.tools)2.3 [安装搜狗输入法](https://shurufa.sogou.com/)2.4 [安装snipaste…

Qt多语言翻译

Qt多语言翻译概述 Qt提供了非常简单易用的多语言翻译机制&#xff0c;其核心类为QTranslator.概括来说就是利用Qt的lupdate工具将项目中所有tr函数包裹的字符串提取到.ts文件中&#xff0c;然后使用Qt Linguist由专门的翻译人员对提取的.ts文件进行逐个单词短语的翻译工作. 翻译…

MkDocs 部署指南

简介 MkDocs 可以同时编译多个 markdown 文件&#xff0c;形成书籍一样的文件。有多种主题供你选择&#xff0c;很适合项目使用。 MkDocs 是快速&#xff0c;简单和华丽的静态网站生成器&#xff0c;可以构建项目文档。文档源文件在 Markdown 编写&#xff0c;使用单个 YAML …

绝世唐门:霍挂六个十万年魂环,一穿七灭团再现,淘汰赛顺利晋级

Hello,小伙伴们&#xff0c;我是拾荒君。 国漫《斗罗大陆2绝世唐门》第32期超前爆料&#xff0c;霍雨浩开局便释放六个十万年魂环&#xff0c;以绝对的气场碾压天灵学院代表队。首次参与高级魂师大赛&#xff0c;霍雨浩便大放异彩秀出超级霍挂&#xff0c;此等操作就连当初的唐…

2023.12 淘天-数科 已offer

文章目录 岗位信息1面ld 12.17 1H2面 VP 12.18 40min3面 HR 12.2012.21offer薪资方案沟通 岗位信息 1面ld 12.17 1H &#xff08;是一个从业估计很长时间前辈&#xff0c;很平和&#xff0c;感觉能学到很多东西&#xff09; 自我介绍项目深究1.说下自己工作里最有成就感的事和…

【用Unity开发一款横板跳跃游戏部分需要学习的技术点指南】

*** 用Unity开发一款横板跳跃游戏部分需要学习的技术点指南 空洞骑士是一款基于横板平台跳跃的传统风格2D动作冒险游戏&#xff0c;庞大的游戏世界交错相通&#xff0c;玩家控制小虫子去探索幽深黑暗的洞穴&#xff0c;成为了一代人茶余饭后的惦念&#xff0c;深受玩家喜爱。 …

Peter算法小课堂—Dijkstra最短路算法

大家好&#xff0c;我们人见人爱、花见花开、车见车爆胎的Peter Pan来啦&#xff0c;hia~hia~hia。今天&#xff0c;我们今天来学习毒瘤的最短路算法啦。啊这……什么是Dijkstra算法&#xff1f;长文警告⚠ 正经点啊 手算样例 大家思考一下&#xff0c;你在手算样例的时候&am…

MATLAB实现随机森林(RF)回归与自变量影响程度分析

本文分为两部分&#xff0c;首先是对代码进行分段、详细讲解&#xff0c;方便大家理解&#xff1b;随后是完整代码&#xff0c;方便大家自行尝试。另外&#xff0c;关于基于MATLAB的神经网络&#xff08;ANN&#xff09;代码与详细解释&#xff0c;我们将在后期博客中介绍。 1…

Redis常用数据结构与应用场景

常用数据结构 StringHashListSetZset String常用操作 String应用场景 Hash常用操作 hash应用场景 Hash结构优缺点 优点 同类数据归类整合存储,方便数据管理相比String操作消耗内存与spu更小相比string更节省空间 缺点 过期功能不能使用在field上,只用用在key上Redis集群…