【YOLO系列算法俯视视角下舰船目标检测】

news2024/12/25 1:25:15

YOLO系列算法俯视视角下舰船目标检测

      • 数据集和模型
      • YOLO系列算法俯视视角下舰船目标检测
      • YOLO系列算法俯视视角下舰船目标检测可视化结果

数据集和模型

数据和模型下载:

  • YOLOv6俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据
  • YOLOv7俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据
  • YOLOv8俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据集
  • Yolov3俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据集
  • yolov5俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据集+pyqt界面
  • yolov5俯视视角下舰船目标检测+训练好的舰船目标检测模型+舰船目标检测数据集

其他场景舰船检测模型参考:https://blog.csdn.net/zhiqingAI/article/details/124230743

YOLO系列算法俯视视角下舰船目标检测

以yolov6算法为例,YOLOv6(You Only Look Once version 6)是一种先进的实时目标检测算法,它在计算机视觉领域具有广泛的应用。在俯视视角下进行舰船目标检测是一个重要的应用场景,例如在卫星遥感图像分析、海洋监控和海上搜救等任务中。通过使用YOLOv6算法,我们可以实时地检测和识别舰船目标,从而提高任务效率和准确性。

为了实现YOLOv6在俯视视角下的舰船目标检测,我们需要进行以下几个步骤:

  1. 数据准备:首先,我们需要收集大量的俯视视角下的舰船图像数据。这些数据可以从卫星遥感图像、无人机拍摄的图像或者其他途径获取。然后,我们需要对这些图像进行标注,即在图像中标出舰船的位置和类别。这一步骤可以通过人工标注或者半自动标注的方式进行。

  2. 模型训练:接下来,我们需要使用收集到的标注数据来训练YOLOv6模型。在训练过程中,模型会学习到如何从俯视视角下的图像中检测出舰船目标。为了提高模型的泛化能力,我们还可以采用数据增强技术,如旋转、缩放、翻转等,来扩充训练数据集。

  3. 模型评估:在模型训练完成后,我们需要对模型的性能进行评估。这可以通过计算模型在测试数据集上的准确率、召回率、F1分数等指标来实现。如果模型的性能不满足要求,我们可以尝试调整模型的参数或者使用更复杂的模型结构来进行优化。

  4. 应用部署:当模型的性能达到预期后,我们可以将其部署到实际的应用中。例如,在卫星遥感图像分析系统中,我们可以使用训练好的YOLOv6模型来实时检测舰船目标,并将检测结果用于后续的任务,如舰船跟踪、类型识别等。

总之,通过使用YOLOv6算法,我们可以有效地实现俯视视角下的舰船目标检测。这对于提高海洋监控、海上搜救等任务的效率和准确性具有重要意义。

yolo版本对比:
在俯视视角下进行舰船目标检测时,YOLOv3、YOLOv5、YOLOv6、YOLOv7和YOLOv8各有其特点和优势。

  • YOLOv3:作为早期的经典模型,YOLOv3在速度和准确性之间取得了良好的平衡,但在处理小目标检测和密集目标场景时可能会有所不足。
  • YOLOv5:YOLOv5在实时应用中表现出色,具有较高的FPS(每秒帧数),特别是在版本’n’上,使其成为实时应用的首选。YOLOv5经过高度优化,非常适用于实时应用。
  • YOLOv6:虽然在比较中没有提及YOLOv6的详细信息,但可以推测它可能在YOLOv5的基础上进行了一些改进,以提高性能和准确性。
  • YOLOv7:YOLOv7在模型的性能上有所提升,可能采用了更新的网络架构和训练技术,以提高检测的准确性和速度。
  • YOLOv8:YOLOv8是最新的模型,它在COCO数据集上取得了较高的平均精度,表现出对小物体检测的优越性能,并解决了YOLOv5的一些限制。YOLOv8包含五个模型,从最快最小的YOLOv8 Nano到最准确但最慢的YOLOv8x,提供了不同应用场景下的多种选择。此外,YOLOv8在CPU上的FPS虽低于YOLOv5,但在某些GPU上的FPS高于YOLOv5,且其’n’版本适用于嵌入式设备,如Jetson Nano。

总的来说,如果需要较快的检测速度,尤其是在资源受限的环境下,可以考虑使用YOLOv5或YOLOv8的某些版本。对于更高的检测精度,尤其是对小目标的检测,YOLOv8可能是更好的选择。

YOLO系列算法俯视视角下舰船目标检测可视化结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1415942.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习|ROC曲线和AUC值

概念AUC(Area Under Curve)被定义为ROC曲线下的面积。其中,ROC曲线全称为受试者工作特征曲线 (receiver operating characteristic curve), 模型会计算出所判断事物为汉堡🍔的概率,而…

基于DataKit迁移MySQL到openGauss

📢📢📢📣📣📣 哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】!😜&am…

华为二层交换机与防火墙配置上网示例

二层交换机与防火墙对接上网配置示例 组网图形 图1 二层交换机与防火墙对接上网组网图 二层交换机简介配置注意事项组网需求配置思路操作步骤配置文件相关信息 二层交换机简介 二层交换机指的是仅能够进行二层转发,不能进行三层转发的交换机。也就是说仅支持二层…

[SwiftUI]系统弹窗和自定义弹窗

一、系统弹窗 在 SwiftUI 中,.alert 是一个修饰符,用于在某些条件下显示一个警告对话框。Alert 可以配置标题、消息和一系列的按钮。每个按钮可以是默认样式、取消样式,或者是破坏性的样式,它们分别对应不同的用户操作。 1.Aler…

Power ModeII 插件的下载与使用-----idea

下载 Marketplace里面搜索下载即可 使用 下载后重启软件就可以用了 下面是一些关于Power ModeII ,我的个性化设置截图 以及相关设置解释 插件或扩展的设置面板【用于给代码编辑器或集成开发环境(IDE)添加视觉效果】 主要设置 ENTER POWE…

【控制算法笔记】卡尔曼滤波(二)——基于状态空间表达的KF基本计算流程以及Python实现

本文是个人学习笔记,包含个人理解,如有错误欢迎指正。 KF算法更多的情况下会用来处理复杂的非线性数据,尤其是当对象特征或检测的状态量不止一个时就得使用状态方程的方法,利用线性代数的计算方式来解决噪声的估计问题。这其中涉及…

uniapp微信小程序-请求二次封装(直接可用)

一、请求封装优点 代码重用性:通过封装请求,你可以在整个项目中重用相同的请求逻辑。这样一来,如果 API 发生变化或者需要进行优化,你只需在一个地方修改代码,而不是在每个使用这个请求的地方都进行修改。 可维护性&a…

Java基础数据结构之哈希表

概念 顺序结构以及平衡树 中,元素关键码与其存储位置之间没有对应的关系,因此在 查找一个元素时,必须要经过关键 码的多次比较 。 顺序查找时间复杂度为 O(N) ,平衡树中为树的高度,即 O( log2N ) ,搜索的效…

应急响应-内存分析

在应急响应过程中,除了上述几个通用的排查项,有时也需要对应响应服务器进行内存的提权,从而分析其中的隐藏进程。 内存的获取 内存的获取方法有如下几种: 基于用户模式程序的内存获取;基于内核模式程序的内存获取&a…

SparkSql---用户自定义函数UDFUDAF

文章目录 1.UDF2.UDAF2.1 UDF函数实现原理2.2需求:计算用户平均年龄2.2.1 使用RDD实现2.2.2 使用UDAF弱类型实现2.2.3 使用UDAF强类型实现 1.UDF 用户可以通过 spark.udf 功能添加自定义函数,实现自定义功能。 如:实现需求在用户name前加上"Name:…

lv14 内核内存管理、动态分频及IO访问 12

一、内核内存管理框架 内核将物理内存等分成N块4KB,称之为一页,每页都用一个struct page来表示,采用伙伴关系算法维护 补充: Linux内存管理采用了虚拟内存机制,这个机制可以在内存有限的情况下提供更多可用的内存空…

docker compose实现mysql一主多从

参考了很多博客,死磕了几天,最终跑起来了,不容易,晚上喝瓶82年可乐庆祝下。 1、整体文件结构,这里忽略log、conf、data映射目录 2、docker-compose.yml文件内容如下: version: 3.3 services:mysql-master…

Android App开发-简单控件(3)——常用布局

3.3 常用布局 本节介绍常见的几种布局用法,包括在某个方向上顺序排列的线性布局,参照其他视图的位置相对排列的相对布局,像表格那样分行分列显示的网格布局,CommonLayouts以及支持通过滑动操作拉出更多内容的滚动视图。 3.3.1 线…

代码随想录算法训练DAY29|回溯5

算法训练DAY29|回溯5 491.递增子序列 力扣题目链接 给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。 示例: 输入: [4, 6, 7, 7] 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]] 说…

【QT】QPainter基本绘图

目录 1 QPainter绘图系统 1.1 QPainter与QPaintDevice 1.2 paintEvent事件和绘图区 1.3 QPainter绘图的主要属性 1.4 创建实例 2 QPen的主要功能 2.1 线条样式 2.2 线条端点样式 2.3 线条连接样式 3 QBrush的主要功能 4 渐变填充 5 QPainter绘制基本图形元件 5.1 基本图形元件 …

burp靶场--身份认证漏洞

burp靶场–身份认证漏洞 https://portswigger.net/web-security/authentication#what-is-authentication 1.身份认证漏洞: ### 身份验证漏洞 从概念上讲,身份验证漏洞很容易理解。然而,由于身份验证和安全性之间的明确关系,它们…

基于Java SSM框架实现学校招生信息网系统项目【项目源码+论文说明】

基于java的SSM框架实现学生招生信息网系统演示 摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,学校招生信息网当然也不能排除在外。学校招生信息网是以实际运用为开发背…

【大数据】Flink 中的状态管理

Flink 中的状态管理 1.算子状态2.键值分区状态3.状态后端4.有状态算子的扩缩容4.1 带有键值分区状态的算子4.2 带有算子列表状态的算子4.3 带有算子联合列表状态的算子4.4 带有算子广播状态的算子 在前面的博客中我们指出,大部分的流式应用都是有状态的。很多算子都…

OpenCV 0 - VS2019配置OpenCV

1 配置好环境变量 根据自己的opencv的安装目录配置 2 新建一个空项目 3 打开 视图->工具栏->属性管理器 4 添加新项目属性表 右键项目名(我这是opencvdemo)添加新项目属性表,如果有配置好了的属性表选添加现有属性表 5 双击选中Debug|x64的刚添加的属性表 6 (重点)添…

[LVGL] 可点击的文字label

LVGL8.x 自带的label 是没有点击响应的功能,即使加了lv_obj_add_event_cb 也不起作用,为了解决这个问题,我们使用了按钮控件去模拟纯label的效果;有了这个demo用户就可以实现类似超链接 点击一个文字就跳转到某个页面的功能。 st…