代码随想录算法训练DAY29|回溯5

news2025/2/27 13:24:15

算法训练DAY29|回溯5

491.递增子序列

力扣题目链接

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]

  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。

  • 数组中的整数范围是 [-100,100]。

  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

#思路

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

这又是子集,又是去重,是不是不由自主的想起了刚刚讲过的90.子集II 。

就是因为太像了,更要注意差别所在,要不就掉坑里了!

在90.子集II 中我们是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

491. 递增子序列1

#回溯三部曲

  • 递归函数参数

本题求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
  • 终止条件

本题其实类似求子集问题,也是要遍历树形结构找每一个节点,所以和回溯算法:求子集问题! 一样,可以不加终止条件,startIndex每次都会加1,并不会无限递归。

但本题收集结果有所不同,题目要求递增子序列大小至少为2,所以代码如下:

if (path.size() > 1) {
    result.push_back(path);
    // 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

491. 递增子序列1

在图中可以看出,同一父节点下的同层上使用过的元素就不能再使用了

那么单层搜索代码如下:

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {
    if ((!path.empty() && nums[i] < path.back())
            || uset.find(nums[i]) != uset.end()) {
            continue;
    }
    uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
    path.push_back(nums[i]);
    backtracking(nums, i + 1);
    path.pop_back();
}

对于已经习惯写回溯的同学,看到递归函数上面的uset.insert(nums[i]);,下面却没有对应的pop之类的操作,应该很不习惯吧

这也是需要注意的点,unordered_set<int> uset; 是记录本层元素是否重复使用,新的一层uset都会重新定义(清空),所以要知道uset只负责本层!

最后整体C++代码如下:

// 版本一
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            result.push_back(path);
            // 注意这里不要加return,要取树上的节点
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || uset.find(nums[i]) != uset.end()) {
                    continue;
            }
            uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};
  • 时间复杂度: O(n * 2^n)

  • 空间复杂度: O(n)

#优化

以上代码用我用了unordered_set<int>来记录本层元素是否重复使用。

其实用数组来做哈希,效率就高了很多

注意题目中说了,数值范围[-100,100],所以完全可以用数组来做哈希。

程序运行的时候对unordered_set 频繁的insert,unordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。

那么优化后的代码如下:

// 版本二
class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            result.push_back(path);
        }
        int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || used[nums[i] + 100] == 1) {
                    continue;
            }
            used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return result;
    }
};

这份代码在leetcode上提交,要比版本一耗时要好的多。

所以正如在哈希表:总结篇!(每逢总结必经典) 中说的那样,数组,set,map都可以做哈希表,而且数组干的活,map和set都能干,但如果数值范围小的话能用数组尽量用数组

#总结

本题题解清一色都说是深度优先搜索,但我更倾向于说它用回溯法,而且本题我也是完全使用回溯法的逻辑来分析的。

相信大家在本题中处处都能看到是回溯算法:求子集问题(二) (opens new window)的身影,但处处又都是陷阱。

对于养成思维定式或者套模板套嗨了的同学,这道题起到了很好的警醒作用。更重要的是拓展了大家的思路

46.全排列

力扣题目链接

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]

  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

#思路

相信这个排列问题就算是让你用for循环暴力把结果搜索出来,这个暴力也不是很好写。

因为一些问题能暴力搜出来就已经很不错了!

我以[1,2,3]为例,抽象成树形结构如下:

46.全排列

#回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

// 此时说明找到了一组
if (path.size() == nums.size()) {
    result.push_back(path);
    return;
}
  • 单层搜索的逻辑

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

for (int i = 0; i < nums.size(); i++) {
    if (used[i] == true) continue; // path里已经收录的元素,直接跳过
    used[i] = true;
    path.push_back(nums[i]);
    backtracking(nums, used);
    path.pop_back();
    used[i] = false;
}

整体C++代码如下:

class Solution {
public:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            if (used[i] == true) continue; // path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};
  • 时间复杂度: O(n!)

  • 空间复杂度: O(n)

#总结

大家此时可以感受出排列问题的不同:

  • 每层都是从0开始搜索而不是startIndex

  • 需要used数组记录path里都放了哪些元素了

排列问题是回溯算法解决的经典题目,大家可以好好体会体会。

47.全排列 II

力扣题目链接

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]

  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]

  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8

  • -10 <= nums[i] <= 10

#思路

这里又涉及到去重了。

那么排列问题其实也是一样的套路。

还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

47.全排列II1

图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝nums[i - 1]使用过
            // used[i - 1] == false,说明同一树层nums[i - 1]使用过
            // 如果同一树层nums[i - 1]使用过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracking(nums, used);
                path.pop_back();
                used[i] = false;
            }
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 排序
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};
​
// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素
  • 时间复杂度: O(n! * n)

  • 空间复杂度: O(n)

#拓展

大家发现,去重最为关键的代码为:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

如果改成 used[i - 1] == true, 也是正确的!,去重代码如下:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false,如果要对树枝前一位去重用used[i - 1] == true

对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!

这么说是不是有点抽象?

来来来,我就用输入: [1,1,1] 来举一个例子。

树层上去重(used[i - 1] == false),的树形结构如下:

47.全排列II2

树枝上去重(used[i - 1] == true)的树型结构如下:

47.全排列II3

大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索。

#总结

这道题其实还是用了我们之前讲过的去重思路,但有意思的是,去重的代码中,这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

和这么写:

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

都是可以的,这也是很多同学做这道题目困惑的地方,知道used[i - 1] == false也行而used[i - 1] == true也行,但是就想不明白为啥。

所以我通过举[1,1,1]的例子,把这两个去重的逻辑分别抽象成树形结构,大家可以一目了然:为什么两种写法都可以以及哪一种效率更高!

这里可能大家又有疑惑,既然 used[i - 1] == false也行而used[i - 1] == true也行,那为什么还要写这个条件呢?

直接这样写 不就完事了?

if (i > 0 && nums[i] == nums[i - 1]) {
    continue;
}

其实并不行,一定要加上 used[i - 1] == false或者used[i - 1] == true,因为 used[i - 1] 要一直是 true 或者一直是false 才可以,而不是 一会是true 一会又是false。 所以这个条件要写上。

是不是豁然开朗了!

另一种写法

原理是树枝去重

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums,vector<int>& used){
        if(nums.size()==path.size()){
            result.push_back(path);
            return;
        }
        for(int i=0;i<nums.size();i++){
            if(used[i]==1){
                continue;
            }
            if(i>0&&nums[i]==nums[i-1]&&used[i-1]==1){
                break;
            }
            used[i] = 1;
            path.push_back(nums[i]);
            backtracking(nums,used);
            used[i] = 0;
            path.pop_back();
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        sort(nums.begin(),nums.end());
        vector<int> used(nums.size(),0);
        backtracking(nums,used);
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1415925.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【QT】QPainter基本绘图

目录 1 QPainter绘图系统 1.1 QPainter与QPaintDevice 1.2 paintEvent事件和绘图区 1.3 QPainter绘图的主要属性 1.4 创建实例 2 QPen的主要功能 2.1 线条样式 2.2 线条端点样式 2.3 线条连接样式 3 QBrush的主要功能 4 渐变填充 5 QPainter绘制基本图形元件 5.1 基本图形元件 …

burp靶场--身份认证漏洞

burp靶场–身份认证漏洞 https://portswigger.net/web-security/authentication#what-is-authentication 1.身份认证漏洞&#xff1a; ### 身份验证漏洞 从概念上讲&#xff0c;身份验证漏洞很容易理解。然而&#xff0c;由于身份验证和安全性之间的明确关系&#xff0c;它们…

基于Java SSM框架实现学校招生信息网系统项目【项目源码+论文说明】

基于java的SSM框架实现学生招生信息网系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;学校招生信息网当然也不能排除在外。学校招生信息网是以实际运用为开发背…

【大数据】Flink 中的状态管理

Flink 中的状态管理 1.算子状态2.键值分区状态3.状态后端4.有状态算子的扩缩容4.1 带有键值分区状态的算子4.2 带有算子列表状态的算子4.3 带有算子联合列表状态的算子4.4 带有算子广播状态的算子 在前面的博客中我们指出&#xff0c;大部分的流式应用都是有状态的。很多算子都…

OpenCV 0 - VS2019配置OpenCV

1 配置好环境变量 根据自己的opencv的安装目录配置 2 新建一个空项目 3 打开 视图->工具栏->属性管理器 4 添加新项目属性表 右键项目名(我这是opencvdemo)添加新项目属性表,如果有配置好了的属性表选添加现有属性表 5 双击选中Debug|x64的刚添加的属性表 6 (重点)添…

[LVGL] 可点击的文字label

LVGL8.x 自带的label 是没有点击响应的功能&#xff0c;即使加了lv_obj_add_event_cb 也不起作用&#xff0c;为了解决这个问题&#xff0c;我们使用了按钮控件去模拟纯label的效果&#xff1b;有了这个demo用户就可以实现类似超链接 点击一个文字就跳转到某个页面的功能。 st…

Kotlin 教程(环境搭建)

Kotlin IntelliJ IDEA环境搭建 IntelliJ IDEA 免费的社区版下载地址&#xff1a;Download IntelliJ IDEA – The Leading Java and Kotlin IDE 下载安装后&#xff0c;我们就可以使用该工具来创建项目&#xff0c;创建过程需要选择 SDK&#xff0c; Kotlin 与 JDK 1.6 一起使…

【大数据】详解 Flink 中的 WaterMark

详解 Flink 中的 WaterMark 1.基础概念1.1 流处理1.2 乱序1.3 窗口及其生命周期1.4 Keyed vs Non-Keyed1.5 Flink 中的时间 2.Watermark2.1 案例一2.2 案例二2.3 如何设置最大乱序时间2.4 延迟数据重定向 3.在 DDL 中的定义3.1 事件时间3.2 处理时间 1.基础概念 1.1 流处理 流…

1.【Vue3】前端开发引入、Vue 简介

1. 前端开发引入 1.1 前端开发前置知识 通过之前的学习&#xff0c;已经通过 SpringBoot 和一些三方技术完成了大事件项目的后端开发。接下来开始学习大事件项目的前端开发&#xff0c;前端部分借助两个框架实现&#xff1a; Vue3&#xff08;一个 JS 框架&#xff09;基于 …

Vue-Router: 如何使用路由元信息来管理路由?

Vue-Router是Vue.js官方的路由管理器&#xff0c;它可以帮助我们快速构建单页应用程序&#xff08;SPA&#xff09;。除了常见的路由功能外&#xff0c;Vue-Router还支持使用路由元信息来管理和控制路由。路由元信息是可以附加到路由上的自定义属性&#xff0c;它可以帮助我们实…

LandrayOA内存调优 / JAVA内存调优 / Tomcat web.xml 超时时间调优实战

目录 一、背景说明 二、LandrayOA / Tomcat 内存调优 2.1 \win64\tomcat\conf\web.xml 文件调优 2.2 \win64\tomcat\bin\catalina64.bat 文件调优 一、背景说明 随着系统的使用时间越来越长&#xff0c;数据量越多&#xff0c;发现系统的有些功能越来越慢&…

在腾讯云上部署幻兽帕鲁,实现游戏自由!

在帕鲁的世界&#xff0c;你可以选择与神奇的生物「帕鲁」一同享受悠闲的生活&#xff0c;也可以投身于与偷猎者进行生死搏斗的冒险。帕鲁可以进行战斗、繁殖、协助你做农活&#xff0c;也可以为你在工厂工作。你也可以将它们进行售卖&#xff0c;或肢解后食用。引用自&#xf…

第17章_反射机制(理解Class类并获取Class实例,类的加载与ClassLoader的理解,反射的基本应用,读取注解信息,体会反射的动态性)

文章目录 第17章_反射机制本章专题与脉络1. 反射(Reflection)的概念1.1 反射的出现背景1.2 反射概述1.3 Java反射机制研究及应用1.4 反射相关的主要API1.5 反射的优缺点 2. 理解Class类并获取Class实例2.1 理解Class2.1.1 理论上2.1.2 内存结构上 2.2 获取Class类的实例(四种方…

Linux系统优化要义

这里不敢说 linux优化奥义&#xff0c;主要是本文比较浅显&#xff0c;适合普通开发相关人员去读 linux作为服务器系统的王者&#xff0c;以稳定性著称&#xff0c;但对于不同的“应用场景”&#xff0c;相关配置还需调整&#xff0c;才能保证业务稳定性。以下是相关总结 IO优…

函数入门.

函数入门 1. 初识函数2. 函数的参数2.1 参数2.2 默认参数2.3 动态参数 3. 函数返回值总结作业 1. 初识函数 函数到底是个什么东西&#xff1f; 函数&#xff0c;可以当做是一大堆功能代码的集合。 def 函数名():函数内编写代码......函数名()例如&#xff1a; # 定义名字叫in…

Linux 驱动开发基础知识—— 具体单板的 LED 驱动程序(五)

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的在校大学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;V…

THM学习笔记——john

John the Ripper是目前最好的哈希破解工具之一。 John基本语法&#xff1a; john [options] [path to file] john&#xff1a;调用John the Ripper程序。 [path to file]&#xff1a;包含你要尝试破解的哈希的文件&#xff0c;如果它们在同一个目录中&#xff0c;你就不需要命名…

S275 4G网络IO模块:智能酒店的理想选择

行业背景 随着物联网技术的发展&#xff0c;酒店服务也变得更加“智能”——自动灯光效果、室内温湿度控制、各种人性化操作等贴心服务&#xff0c;带给顾客真正的宾至如归之感。 同时&#xff0c;智慧酒店更为管理者提供了高效的管理手段&#xff0c;将酒店物耗、能耗、人员…

CSS探索浏览器兼容性

学习如何探索浏览器的兼容性对于编写跨浏览器兼容的CSS代码非常重要。以下是一些学习CSS兼容性的方法&#xff1a; MDN文档&#xff1a;Mozilla开发者网络&#xff08;MDN&#xff09;提供了广泛而详细的CSS文档&#xff0c;其中包含有关CSS属性、选择器和功能的信息。在MDN上…

解决 PDF.js v2.3.200 (build: 4ae3f9fc) 信息:PDFDocument: Stream must have data

文章标题 问题描述&#xff1a;思考分析&#xff1a;解决方案&#xff1a;参考资料 问题描述&#xff1a; 项目中使用PDF.js去预览已上传的附件文件时&#xff0c;加载PDF文件的时候报了以下的错误 错误信息如下 PDF.js v2.3.200 (build: 4ae3f9fc) 信息&#xff1a;PDFDocu…