lv14 内核内存管理、动态分频及IO访问 12

news2024/12/25 12:54:11

一、内核内存管理框架

内核将物理内存等分成N块4KB,称之为一页,每页都用一个struct page来表示,采用伙伴关系算法维护

补充:

Linux内存管理采用了虚拟内存机制,这个机制可以在内存有限的情况下提供更多可用的内存空间。每个进程都有自己独立的虚拟地址空间,应用程序只能访问自己的地址空间,而不能直接访问其他进程的地址空间或内核空间。

当应用程序需要访问某些数据时,它会使用虚拟地址来引用这些数据。实际上,这些虚拟地址并不是直接映射到物理内存,而是由操作系统进行转换。操作系统将虚拟地址映射到物理内存中的一些页框(Page Frame),这个过程称为页表映射(Page Table Mapping)

因此,每个应用程序都有自己的页表,它们被存储在内存中,这些页表以及对应的物理页框在不同的时间可能会被交换到硬盘上,从而释放内存空间。当应用程序访问虚拟地址时,操作系统会根据页表映射的结果找到相应的物理页框,然后将数据从物理内存中读取出来。

由于每个应用程序都有自己独立的虚拟地址空间和页表,所以应用程序之间的内存访问是相互隔离的。这种隔离机制可以保证每个应用程序只能访问自己的内存空间,而不能对其他应用程序或操作系统造成干扰。这也是为什么应用程序内存不会影响到其他内存的原因。

0~1G虚拟地址给内核用

1~4G虚拟地址给应用程序用(我们这次研究这块)

内核地址空间划分图:

3G~3G+896M:低端内存,直接映射 虚拟地址 = 3G + 物理地址(虚拟地址连续,物理地址也连续)

细分为:ZONE_DMA、ZONE_NORMAL

分配方式:

1. kmalloc:小内存分配,slab算法
2. get_free_page:整页分配,2的n次方页,n最大为10

大于3G+896M:高端内存

细分为:vmalloc区、持久映射区、固定映射区

分配方式:

vmalloc:虚拟地址连续,物理地址不连续

二、内核中常用动态分配

2.1 kmalloc

函数原型:

void *kmalloc(size_t size, gfp_t flags);

  kmalloc() 申请的内存位于直接映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。   

较常用的 flags(分配内存的方法):

  • GFP_ATOMIC —— 分配内存的过程是一个原子过程,分配内存的过程不会被(高优先级进程或中断)打断;

  • GFP_KERNEL —— 正常分配内存;

  • GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志(DMA要求分配虚拟地址和物理地址连续)。

flags 的参考用法:  

|– 进程上下文,可以睡眠     GFP_KERNEL  

|– 异常上下文,不可以睡眠    GFP_ATOMIC  

|  |– 中断处理程序       GFP_ATOMIC  

|  |– 软中断          GFP_ATOMIC  

|  |– Tasklet         GFP_ATOMIC  

|– 用于DMA的内存,可以睡眠   GFP_DMA | GFP_KERNEL  

|– 用于DMA的内存,不可以睡眠  GFP_DMA |GFP_ATOMIC   

对应的内存释放函数为:

void kfree(const void *objp);
void *kzalloc(size_t size, gfp_t flags)

2.2 vmalloc

void *vmalloc(unsigned long size);

  vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。

对应的内存释放函数为:

void vfree(const void *addr);

注意:vmalloc() 和 vfree() 可以睡眠,因此不能从异常上下文调用

2.3 kmalloc & vmalloc 的比较

kmalloc()、kzalloc()、vmalloc() 的共同特点是:

  1. 用于申请内核空间的内存;

  2. 内存以字节为单位进行分配;

  3. 所分配的内存虚拟地址上连续;

kmalloc()、kzalloc()、vmalloc() 的区别是:

  1. kzalloc 是强制清零的 kmalloc 操作;(以下描述不区分 kmalloc 和 kzalloc)

  2. kmalloc 分配的内存大小有限制(128KB),而 vmalloc 没有限制;

  3. kmalloc 可以保证分配的内存物理地址是连续的,但是 vmalloc 不能保证;

  4. kmalloc 分配内存的过程可以是原子过程(使用 GFP_ATOMIC),而 vmalloc 分配内存时则可能产生阻塞

  5. kmalloc 分配内存的开销小因此 kmalloc 比 vmalloc 要快

一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。

2.4 分配选择原则:

  1. 小内存(< 128k)用kmalloc,大内存用vmalloc或get_free_page

  2. 如果需要比较大的内存,并且要求使用效率较高时用get_free_page,否则用vmalloc

三、IO访问-------访问外设控制器的寄存器

访问外设控制器的寄存器两种方式:

  1. IO端口:X86上用IO指令访问

  2. IO内存:外设寄存器在SOC芯片手册上都有相应物理地址

IO内存访问接口:

static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
/*
功能:实现IO管脚的映射
参数:offset:该管脚的偏移地址
     Size:该管脚映射空间的大小
返回值:成功返回映射的虚拟地址,失败NULL
*/
​
static inline void iounmap(volatile void __iomem *addr)
/*
功能:解除io管脚的映射
参数:addr:io管脚映射的地址
*/
​
unsigned readb(void *addr);//1字节   或ioread8(void *addr)
unsigned readw(void *addr);//2字节   或ioread16(void *addr)
unsigned readl(void *addr);//4字节   或ioread32(void *addr)
/*
功能:读取寄存器的值
参数:addr  地址
返回值:读到的数据
*/
​
void writeb(unsigned value, void *addr);//1字节   或iowrite8(u8 value, void *addr)
void writew(unsigned value, void *addr);//2字节  或iowrite16(u16 value, void *addr)
void writel(unsigned value, void *addr);//4字节  或iowrite32(u32 value, void *addr)
/*
 功能:向指定的寄存器中,写入数据。
 参数:value:待写入寄存器中的数据
      Address:寄存器的虚拟地址
*/

四、led驱动

  1. 读原理图

  2. 查阅SOC芯片手册

    GPX2_7 led2 GPX2CON----0x11000C40---28~31-----0001 GPX2DAT-----0x11000C44-----7

    GPX1_0 led3 GPX1CON----0x11000C20---0~3-----0001 GPX1DAT----0x11000C24-----0

    GPF3_4 led4 GPF3CON----0x114001E0---16~19-----0001 GPF3DAT----0x114001E4-----4

    GPF3_5 led5 GPF3CON----0x114001E0---20~23-----0001 GPF3DAT----0x114001E4-----5

五、示例

实现led驱动,点亮关闭led

leddrv.c

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <asm/uaccess.h>
#include <asm/atomic.h>

#include "leddrv.h"

#define GPX1CON 0x11000C20
#define GPX1DAT 0x11000C24

#define GPX2CON 0x11000C40
#define GPX2DAT 0x11000C44

#define GPF3CON 0x114001E0
#define GPF3DAT 0x114001E4


int major = 11;
int minor = 0;
int myled_num  = 1;

struct myled_dev
{
	struct cdev mydev;

	volatile unsigned long *pled2_con;  
	volatile unsigned long *pled2_dat;
	
	volatile unsigned long *pled3_con;
	volatile unsigned long *pled3_dat;

	volatile unsigned long *pled4_con;
	volatile unsigned long *pled4_dat;

	volatile unsigned long *pled5_con;
	volatile unsigned long *pled5_dat;
/*
volatile 防止优化。对这块指针指向的内存,有时候cpu会把外设寄存器中的值读到内部寄存器中,方便下次读的时候更快.加了voltatile就不会优化,否则cpu可能会从内部寄存器中读取,而不是去外设寄存器中读取。
*/
};

struct myled_dev *pgmydev = NULL;


int myled_open(struct inode *pnode,struct file *pfile)
{
	pfile->private_data =(void *) (container_of(pnode->i_cdev,struct myled_dev,mydev));
	
	return 0;
}

int myled_close(struct inode *pnode,struct file *pfile)
{
	return 0;
}

void led_on(struct myled_dev *pmydev,int ledno)
{
	switch(ledno)
	{
		case 2:
			writel(readl(pmydev->pled2_dat) | (0x1 << 7),pmydev->pled2_dat);
			break;
		case 3:
			writel(readl(pmydev->pled3_dat) | (0x1),pmydev->pled3_dat);
			break;
		case 4:
			writel(readl(pmydev->pled4_dat) | (0x1 << 4),pmydev->pled4_dat);
			break;
		case 5:
			writel(readl(pmydev->pled5_dat) | (0x1 << 5),pmydev->pled5_dat);
			break;
	}
}

void led_off(struct myled_dev *pmydev,int ledno)
{
	switch(ledno)
	{
		case 2:
			writel(readl(pmydev->pled2_dat) & (~(0x1 << 7)),pmydev->pled2_dat);
			break;
		case 3:
			writel(readl(pmydev->pled3_dat) & (~(0x1)),pmydev->pled3_dat);
			break;
		case 4:
			writel(readl(pmydev->pled4_dat) & (~(0x1 << 4)),pmydev->pled4_dat);
			break;
		case 5:
			writel(readl(pmydev->pled5_dat) & (~(0x1 << 5)),pmydev->pled5_dat);
			break;
	}
}


long myled_ioctl(struct file *pfile,unsigned int cmd,unsigned long arg)
{
	struct myled_dev *pmydev = (struct myled_dev *)pfile->private_data;

	if(arg < 2 || arg > 5)
	{
		return -1;
	}
	switch(cmd)
	{
		case MY_LED_ON:
			led_on(pmydev,arg);
			break;
		case MY_LED_OFF:
			led_off(pmydev,arg);
			break;
		default:
			return -1;
	}

	return 0;
}

struct file_operations myops = {
	.owner = THIS_MODULE,
	.open = myled_open,
	.release = myled_close,
	.unlocked_ioctl = myled_ioctl,
};

void ioremap_ledreg(struct myled_dev *pmydev)
{
	pmydev->pled2_con = ioremap(GPX2CON,4);
	pmydev->pled2_dat = ioremap(GPX2DAT,4);

	pmydev->pled3_con = ioremap(GPX1CON,4);
	pmydev->pled3_dat = ioremap(GPX1DAT,4);
	
	pmydev->pled4_con = ioremap(GPF3CON,4);
	pmydev->pled4_dat = ioremap(GPF3DAT,4);
	
	pmydev->pled5_con = pmydev->pled4_con; //最后一个led5不能remap,因为使用的是同一个组寄存器不同的位
	pmydev->pled5_dat = pmydev->pled4_dat;
}

void set_output_ledconreg(struct myled_dev *pmydev)
{
	writel((readl(pmydev->pled2_con) & (~(0xF << 28))) | (0x1 << 28),pmydev->pled2_con);
	writel((readl(pmydev->pled3_con) & (~(0xF))) | (0x1),pmydev->pled3_con);
	writel((readl(pmydev->pled4_con) & (~(0xF << 16))) | (0x1 << 16),pmydev->pled4_con);
	writel((readl(pmydev->pled5_con) & (~(0xF << 20))) | (0x1 << 20),pmydev->pled5_con);

	writel(readl(pmydev->pled2_dat) & (~(0x1 << 7)),pmydev->pled2_dat);
	writel(readl(pmydev->pled3_dat) & (~(0x1)),pmydev->pled3_dat);
	writel(readl(pmydev->pled4_dat) & (~(0x1 << 4)),pmydev->pled4_dat);
	writel(readl(pmydev->pled5_dat) & (~(0x1 << 5)),pmydev->pled5_dat);
}

void iounmap_ledreg(struct myled_dev *pmydev)
{
	iounmap(pmydev->pled2_con);
	pmydev->pled2_con = NULL;
	iounmap(pmydev->pled2_dat);
	pmydev->pled2_dat = NULL;

	iounmap(pmydev->pled3_con);
	pmydev->pled3_con = NULL;
	iounmap(pmydev->pled3_dat);
	pmydev->pled3_dat = NULL;
	
	iounmap(pmydev->pled4_con);
	pmydev->pled4_con = NULL;
	iounmap(pmydev->pled4_dat);
	pmydev->pled4_dat = NULL;
	
	pmydev->pled5_con = NULL;
	pmydev->pled5_dat = NULL;
}

int __init myled_init(void)
{
	int ret = 0;
	dev_t devno = MKDEV(major,minor);

	/*申请设备号*/
	ret = register_chrdev_region(devno,myled_num,"myled");
	if(ret)
	{
		ret = alloc_chrdev_region(&devno,minor,myled_num,"myled");
		if(ret)
		{
			printk("get devno failed\n");
			return -1;
		}
		major = MAJOR(devno);//容易遗漏,注意
	}

	pgmydev = (struct myled_dev *)kmalloc(sizeof(struct myled_dev),GFP_KERNEL);
	if(NULL == pgmydev)
	{
		unregister_chrdev_region(devno,myled_num);
		printk("kmalloc failed\n");
		return -1;
	}
	memset(pgmydev,0,sizeof(struct myled_dev)); //这里的memset并非c库的函数,而是内核自己实现的memset函数

	/*给struct cdev对象指定操作函数集*/	
	cdev_init(&pgmydev->mydev,&myops);

	/*将struct cdev对象添加到内核对应的数据结构里*/
	pgmydev->mydev.owner = THIS_MODULE;
	cdev_add(&pgmydev->mydev,devno,myled_num);

	/*ioremap*/
	ioremap_ledreg(pgmydev);

	/*con-register set output*/
	set_output_ledconreg(pgmydev);

	return 0;
}

void __exit myled_exit(void)
{
	dev_t devno = MKDEV(major,minor);

	/*iounmap*/
	iounmap_ledreg(pgmydev);

	cdev_del(&pgmydev->mydev);

	unregister_chrdev_region(devno,myled_num);

	kfree(pgmydev);
	pgmydev = NULL;
}


MODULE_LICENSE("GPL");

module_init(myled_init);
module_exit(myled_exit);

leddrv.h

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>

#include <stdio.h>

#include "leddrv.h"

int main(int argc,char *argv[])
{
	int fd = -1;
	int onoff = 0;
	int no = 0;

	if(argc < 4)
	{
		printf("The argument is too few\n");
		return 1;
	}

	sscanf(argv[2],"%d",&onoff);
	sscanf(argv[3],"%d",&no);

	if(no < 2 || no > 5)
	{
		printf("len-no is invalid\n");
		return 2;
	}

	fd = open(argv[1],O_RDONLY);
	if(fd < 0)
	{
		printf("open %s failed\n",argv[1]);
		return 3;
	}

	if(onoff)
	{
		ioctl(fd,MY_LED_ON,no);
	}
	else
	{
		ioctl(fd,MY_LED_OFF,no);
	}

	close(fd);
	fd = -1;
	return 0;
}

Makefile

ifeq ($(KERNELRELEASE),)

ifeq ($(ARCH),arm)
KERNELDIR ?= /home/linux/Linux_4412/kernel/linux-3.14
ROOTFS ?= /opt/4412/rootfs
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
endif
PWD := $(shell pwd)


modules:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules

modules_install:
	$(MAKE) -C $(KERNELDIR) M=$(PWD) modules INSTALL_MOD_PATH=$(ROOTFS) modules_install

clean:
	rm -rf  *.o  *.ko  .*.cmd  *.mod.*  modules.order  Module.symvers   .tmp_versions

else

CONFIG_MODULE_SIG=n
obj-m += mychar.o
obj-m += mychar_poll.o
obj-m += openonce_atomic.o
obj-m += openonce_spinlock.o
obj-m += mychar_sema.o
obj-m += mychar_mutex.o
obj-m += second.o
obj-m += leddrv.o

endif

testled_app.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>

#include <stdio.h>

#include "leddrv.h"

int main(int argc,char *argv[])
{
	int fd = -1;
	int onoff = 0;
	int no = 0;

	if(argc < 4)
	{
		printf("The argument is too few\n");
		return 1;
	}

	sscanf(argv[2],"%d",&onoff);
	sscanf(argv[3],"%d",&no);

	if(no < 2 || no > 5)
	{
		printf("len-no is invalid\n");
		return 2;
	}

	fd = open(argv[1],O_RDONLY);
	if(fd < 0)
	{
		printf("open %s failed\n",argv[1]);
		return 3;
	}

	if(onoff)
	{
		ioctl(fd,MY_LED_ON,no);
	}
	else
	{
		ioctl(fd,MY_LED_OFF,no);
	}

	close(fd);
	fd = -1;
	return 0;
}

编译ko文件: 

编译testled_app

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1415928.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

docker compose实现mysql一主多从

参考了很多博客&#xff0c;死磕了几天&#xff0c;最终跑起来了&#xff0c;不容易&#xff0c;晚上喝瓶82年可乐庆祝下。 1、整体文件结构&#xff0c;这里忽略log、conf、data映射目录 2、docker-compose.yml文件内容如下&#xff1a; version: 3.3 services:mysql-master…

Android App开发-简单控件(3)——常用布局

3.3 常用布局 本节介绍常见的几种布局用法&#xff0c;包括在某个方向上顺序排列的线性布局&#xff0c;参照其他视图的位置相对排列的相对布局&#xff0c;像表格那样分行分列显示的网格布局&#xff0c;CommonLayouts以及支持通过滑动操作拉出更多内容的滚动视图。 3.3.1 线…

代码随想录算法训练DAY29|回溯5

算法训练DAY29|回溯5 491.递增子序列 力扣题目链接 给定一个整型数组, 你的任务是找到所有该数组的递增子序列&#xff0c;递增子序列的长度至少是2。 示例: 输入: [4, 6, 7, 7] 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]] 说…

【QT】QPainter基本绘图

目录 1 QPainter绘图系统 1.1 QPainter与QPaintDevice 1.2 paintEvent事件和绘图区 1.3 QPainter绘图的主要属性 1.4 创建实例 2 QPen的主要功能 2.1 线条样式 2.2 线条端点样式 2.3 线条连接样式 3 QBrush的主要功能 4 渐变填充 5 QPainter绘制基本图形元件 5.1 基本图形元件 …

burp靶场--身份认证漏洞

burp靶场–身份认证漏洞 https://portswigger.net/web-security/authentication#what-is-authentication 1.身份认证漏洞&#xff1a; ### 身份验证漏洞 从概念上讲&#xff0c;身份验证漏洞很容易理解。然而&#xff0c;由于身份验证和安全性之间的明确关系&#xff0c;它们…

基于Java SSM框架实现学校招生信息网系统项目【项目源码+论文说明】

基于java的SSM框架实现学生招生信息网系统演示 摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;学校招生信息网当然也不能排除在外。学校招生信息网是以实际运用为开发背…

【大数据】Flink 中的状态管理

Flink 中的状态管理 1.算子状态2.键值分区状态3.状态后端4.有状态算子的扩缩容4.1 带有键值分区状态的算子4.2 带有算子列表状态的算子4.3 带有算子联合列表状态的算子4.4 带有算子广播状态的算子 在前面的博客中我们指出&#xff0c;大部分的流式应用都是有状态的。很多算子都…

OpenCV 0 - VS2019配置OpenCV

1 配置好环境变量 根据自己的opencv的安装目录配置 2 新建一个空项目 3 打开 视图->工具栏->属性管理器 4 添加新项目属性表 右键项目名(我这是opencvdemo)添加新项目属性表,如果有配置好了的属性表选添加现有属性表 5 双击选中Debug|x64的刚添加的属性表 6 (重点)添…

[LVGL] 可点击的文字label

LVGL8.x 自带的label 是没有点击响应的功能&#xff0c;即使加了lv_obj_add_event_cb 也不起作用&#xff0c;为了解决这个问题&#xff0c;我们使用了按钮控件去模拟纯label的效果&#xff1b;有了这个demo用户就可以实现类似超链接 点击一个文字就跳转到某个页面的功能。 st…

Kotlin 教程(环境搭建)

Kotlin IntelliJ IDEA环境搭建 IntelliJ IDEA 免费的社区版下载地址&#xff1a;Download IntelliJ IDEA – The Leading Java and Kotlin IDE 下载安装后&#xff0c;我们就可以使用该工具来创建项目&#xff0c;创建过程需要选择 SDK&#xff0c; Kotlin 与 JDK 1.6 一起使…

【大数据】详解 Flink 中的 WaterMark

详解 Flink 中的 WaterMark 1.基础概念1.1 流处理1.2 乱序1.3 窗口及其生命周期1.4 Keyed vs Non-Keyed1.5 Flink 中的时间 2.Watermark2.1 案例一2.2 案例二2.3 如何设置最大乱序时间2.4 延迟数据重定向 3.在 DDL 中的定义3.1 事件时间3.2 处理时间 1.基础概念 1.1 流处理 流…

1.【Vue3】前端开发引入、Vue 简介

1. 前端开发引入 1.1 前端开发前置知识 通过之前的学习&#xff0c;已经通过 SpringBoot 和一些三方技术完成了大事件项目的后端开发。接下来开始学习大事件项目的前端开发&#xff0c;前端部分借助两个框架实现&#xff1a; Vue3&#xff08;一个 JS 框架&#xff09;基于 …

Vue-Router: 如何使用路由元信息来管理路由?

Vue-Router是Vue.js官方的路由管理器&#xff0c;它可以帮助我们快速构建单页应用程序&#xff08;SPA&#xff09;。除了常见的路由功能外&#xff0c;Vue-Router还支持使用路由元信息来管理和控制路由。路由元信息是可以附加到路由上的自定义属性&#xff0c;它可以帮助我们实…

LandrayOA内存调优 / JAVA内存调优 / Tomcat web.xml 超时时间调优实战

目录 一、背景说明 二、LandrayOA / Tomcat 内存调优 2.1 \win64\tomcat\conf\web.xml 文件调优 2.2 \win64\tomcat\bin\catalina64.bat 文件调优 一、背景说明 随着系统的使用时间越来越长&#xff0c;数据量越多&#xff0c;发现系统的有些功能越来越慢&…

在腾讯云上部署幻兽帕鲁,实现游戏自由!

在帕鲁的世界&#xff0c;你可以选择与神奇的生物「帕鲁」一同享受悠闲的生活&#xff0c;也可以投身于与偷猎者进行生死搏斗的冒险。帕鲁可以进行战斗、繁殖、协助你做农活&#xff0c;也可以为你在工厂工作。你也可以将它们进行售卖&#xff0c;或肢解后食用。引用自&#xf…

第17章_反射机制(理解Class类并获取Class实例,类的加载与ClassLoader的理解,反射的基本应用,读取注解信息,体会反射的动态性)

文章目录 第17章_反射机制本章专题与脉络1. 反射(Reflection)的概念1.1 反射的出现背景1.2 反射概述1.3 Java反射机制研究及应用1.4 反射相关的主要API1.5 反射的优缺点 2. 理解Class类并获取Class实例2.1 理解Class2.1.1 理论上2.1.2 内存结构上 2.2 获取Class类的实例(四种方…

Linux系统优化要义

这里不敢说 linux优化奥义&#xff0c;主要是本文比较浅显&#xff0c;适合普通开发相关人员去读 linux作为服务器系统的王者&#xff0c;以稳定性著称&#xff0c;但对于不同的“应用场景”&#xff0c;相关配置还需调整&#xff0c;才能保证业务稳定性。以下是相关总结 IO优…

函数入门.

函数入门 1. 初识函数2. 函数的参数2.1 参数2.2 默认参数2.3 动态参数 3. 函数返回值总结作业 1. 初识函数 函数到底是个什么东西&#xff1f; 函数&#xff0c;可以当做是一大堆功能代码的集合。 def 函数名():函数内编写代码......函数名()例如&#xff1a; # 定义名字叫in…

Linux 驱动开发基础知识—— 具体单板的 LED 驱动程序(五)

个人名片&#xff1a; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的在校大学生 &#x1f42f;个人主页&#xff1a;妄北y &#x1f427;个人QQ&#xff1a;2061314755 &#x1f43b;个人邮箱&#xff1a;2061314755qq.com &#x1f989;个人WeChat&#xff1a;V…

THM学习笔记——john

John the Ripper是目前最好的哈希破解工具之一。 John基本语法&#xff1a; john [options] [path to file] john&#xff1a;调用John the Ripper程序。 [path to file]&#xff1a;包含你要尝试破解的哈希的文件&#xff0c;如果它们在同一个目录中&#xff0c;你就不需要命名…