文章目录
- 赛题思路
- 一、简介 -- 关于异常检测
- 异常检测
- 监督学习
- 二、异常检测算法
- 2. 箱线图分析
- 3. 基于距离/密度
- 4. 基于划分思想
- 建模资料
赛题思路
(赛题出来以后第一时间在CSDN分享)
https://blog.csdn.net/dc_sinor?type=blog
一、简介 – 关于异常检测
异常检测(outlier detection)在以下场景:
- 数据预处理
- 病毒木马检测
- 工业制造产品检测
- 网络流量检测
等等,有着重要的作用。由于在以上场景中,异常的数据量都是很少的一部分,因此诸如:SVM、逻辑回归等分类算法,都不适用,因为:
监督学习算法适用于有大量的正向样本,也有大量的负向样本,有足够的样本让算法去学习其特征,且未来新出现的样本与训练样本分布一致。
以下是异常检测和监督学习相关算法的适用范围:
异常检测
- 信用卡诈骗
- 制造业产品异常检
- 数据中心机器异常检
- 入侵检测
监督学习
- 垃圾邮件识别
- 新闻分类
二、异常检测算法
import tushare
from matplotlib import pyplot as plt
df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()
近三个月,成交量大于200000就可以认为发生了异常(天量,嗯,要注意风险了……)
2. 箱线图分析
import tushare
from matplotlib import pyplot as plt
df = tushare.get_hist_data("600680")
v = df[-90: ].volume
v.plot("kde")
plt.show()
大体可以知道,该股票在成交量少于20000,或者成交量大于80000,就应该提高警惕啦!
3. 基于距离/密度
典型的算法是:“局部异常因子算法-Local Outlier Factor”,该算法通过引入“k-distance,第k距离”、“k-distance neighborhood,第k距离邻域”、“reach-distance,可达距离”、以及“local reachability density,局部可达密度 ”和“local outlier factor,局部离群因子”,来发现异常点。
用视觉直观的感受一下,如图2,对于C1集合的点,整体间距,密度,分散情况较为均匀一致,可以认为是同一簇;对于C2集合的点,同样可认为是一簇。o1、o2点相对孤立,可以认为是异常点或离散点。现在的问题是,如何实现算法的通用性,可以满足C1和C2这种密度分散情况迥异的集合的异常点识别。LOF可以实现我们的目标。
4. 基于划分思想
典型的算法是 “孤立森林,Isolation Forest”,其思想是:
假设我们用一个随机超平面来切割(split)数据空间(data space), 切一次可以生成两个子空间(想象拿刀切蛋糕一分为二)。之后我们再继续用一个随机超平面来切割每个子空间,循环下去,直到每子空间里面只有一个数据点为止。直观上来讲,我们可以发现那些密度很高的簇是可以被切很多次才会停止切割,但是那些密度很低的点很容易很早的就停到一个子空间了。
这个的算法流程即是使用超平面分割子空间,然后建立类似的二叉树的过程:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import IsolationForest
rng = np.random.RandomState(42)
# Generate train data
X = 0.3 * rng.randn(100, 2)
X_train = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some regular novel observations
X = 0.3 * rng.randn(20, 2)
X_test = np.r_[X + 1, X - 3, X - 5, X + 6]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-8, high=8, size=(20, 2))
# fit the model
clf = IsolationForest(max_samples=100*2, random_state=rng)
clf.fit(X_train)
y_pred_train = clf.predict(X_train)
y_pred_test = clf.predict(X_test)
y_pred_outliers = clf.predict(X_outliers)
# plot the line, the samples, and the nearest vectors to the plane
xx, yy = np.meshgrid(np.linspace(-8, 8, 50), np.linspace(-8, 8, 50))
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.title("IsolationForest")
plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r)
b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white')
b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green')
c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red')
plt.axis('tight')
plt.xlim((-8, 8))
plt.ylim((-8, 8))
plt.legend([b1, b2, c],
["training observations",
"new regular observations", "new abnormal observations"],
loc="upper left")
plt.show()
建模资料
资料分享: 最强建模资料