Yolov8_使用自定义数据集训练模型1

news2024/12/24 12:21:27

前面几篇文章介绍了如何搭建Yolov8环境、使用默认的模型训练和推理图片及视频的效果、并使用GPU版本的torch加速推理、导出.engine格式的模型进一步利用GPU加速,本篇介绍如何自定义数据集,这样就可以训练出识别特定物体的模型。

《Yolov8_使用自定义数据集训练模型1》——主要是怎么创建自定义数据集,测试demo;

《Yolov8_使用自定义数据集训练模型2》——搜集更多的图片去标注、训练,重点关注训练后的实际效果;

1、创建自定义数据集

1.1、创建自定义数据集——总体流程

  • 收集图片:收集一批带有目标物体的图片【images文件夹下.png图片】
  • 标注目标物体:使用标注工具对图片中的目标物体进行标注【xml_labels文件夹下.xml文件】
  • 划分数据集:将整个数据集按一定比例分为训练集、验证集、测试集【使用split_dataset.py脚本生成split_dataset_txt文件夹中的.txt文件,.txt文件内容是不含后缀.xml的文件名】
  • 生成Yolo标注文件及各数据集使用的图片路径:使用xml_to_txt.py脚本将xml标注文件转成Yolo需要的.txt标注文件【labels文件夹下.txt标注文件】,同时脚本生成训练集、验证集、测试集所使用图片的绝对路径【当前目录下test.txt、train.txt、val.txt】

最终的效果就是下面这个文件夹:

farmland.yaml是进行yolo训练时配置文件,不属于创建数据集,后面再说明;

图片是截图来的命名比较乱,batch_rename.py用于批量重命名,下面会附代码;

1.2、收集图片

收集一批带有目标物体的图片,图片的多少和质量关乎训练出模型的效果,这里只找了几张图片是为了跑一下自定义数据集的流程。

图片是截图来的,自动保存的文件名与内容无关,相信你也不想一个一个rename,下面是对图片批量重命名的batch_rename.py代码:

import os

class BatchRename():
    def __init__(self):
        self.path = './images'  
        
    def rename(self):
        filelist = os.listdir(self.path)    
        total_num = len(filelist)          
        i = 1 
        for item in filelist:
            if 1:  
                src = os.path.join(os.path.abspath(self.path), item)  
                dst = os.path.join(os.path.abspath(self.path), 'farmland' + format(str(i), '0>4s') + '.png')    
                try:
                    os.rename(src, dst)   
                    print('converting %s to %s ...' % (src, dst))
                    i = i + 1
                except:
                    continue
        print ('total rename %d files.' % (total_num))
 
if __name__ == '__main__':
    demo = BatchRename()
    demo.rename()

1.3、标注目标物体

1.3.1、标注工具_没有使用labelimg

大部分人使用的标注工具是labelimg,但是安装labelimg需要安装pyqt5等依赖,pyqt5等不支持python3.10,不至于为了这个标注工具去修改现在Linux的Python环境。虽然labelimg也支持Windows,但是看教程又需要Anaconda环境,没必要这么麻烦,所以不想使用labelimg。

1.3.2、标注工具_使用Colabeler

发现Colabeler的界面还算好看,支持计算机视觉、NLP、语音三大领域的标注,功能强大且免费,所以试试看。

Colabeler官网:Colabeler - Best annotation tool for AI dataset labeling

Windows安装Colabeler,标注后的.xml文件传给Linux

标注的目的是得到.xml文件,所以完全可以在Windows安装该软件并标注,然后使用SSH传给Linux,使用该方式是因为图片本身也要传给Linux,这样等于是把搜集图片和标注这两步合一起在自己的Windows上先做好。

Windows安装Colabeler没必要说了,直接下一步下一步就能安装成功,然后打开界面左上角创建项目,然后选择Localization、填入项目名称、图片路径、分类名称(多个分类用逗号隔开,这里只写了一个farmland,就是想根据图片判断是否是农田)。

使用“Rectangle”工具标注出目标物体,右侧LabelList选择目标所属类别,一张图片所有的目标物体标注完成后单击下方对号确认,使用“Next”进入下一张图片标注,所有图片标注完成单击“Export”导出XML文件。

1.4、划分数据集

目的是将整个数据集按一定比例分为训练集、验证集、测试集。

使用split_dataset.py脚本随机划分数据集,生成split_dataset_txt文件夹中的.txt文件,.txt文件内容是不含后缀.xml的文件名,下面是split_dataset.py以及各文件内容:

import os
import random
 
 
trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = './xml_labels'
txtsavepath = './split_dataset_txt'
total_xml = os.listdir(xmlfilepath)
 
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
 
ftrainval = open('./split_dataset_txt/trainval.txt', 'w')
ftest = open('./split_dataset_txt/test.txt', 'w')
ftrain = open('./split_dataset_txt/train.txt', 'w')
fval = open('./split_dataset_txt/val.txt', 'w')
 
for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)
 
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

1.5、生成Yolo标注文件及各数据集使用的图片路径

使用xml_to_txt.py脚本将xml标注文件转成Yolo需要的.txt标注文件【labels文件夹下.txt标注文件】,同时脚本生成训练集、验证集、测试集所使用图片的绝对路径【当前目录下test.txt、train.txt、val.txt】,下面是xml_to_txt.py以及各文件内容:

如果使用的标注工具不同,解析xml过程可能会报错,此时任意可以打开一个.xml文件根据实际结构修改。

 
import xml.etree.ElementTree as ET
import os
from os import getcwd
 
sets = ['train', 'val', 'test']
classes = ['farmland']
abs_path = os.getcwd()
print(abs_path)
 
def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h
 
def convert_annotation(image_id):
    in_file = open('./xml_labels/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('./labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    
    objects = root.find('outputs').find('object')
      
    for obj in objects.iter('item'):      
        cls = obj.find('name').text
        if cls not in classes :
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
       
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
 
wd = getcwd()
for image_set in sets:
    if not os.path.exists('./labels/'):
        os.makedirs('./labels/')
    image_ids = open('./split_dataset_txt/%s.txt' % (image_set)).read().strip().split()
    list_file = open('./%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/images/%s.png\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

2、使用数据集进行yolo训练

2.1、编写.yaml配置文件

给出训练集、验证集、测试集的路径,训练的目标总数,具体的序号和目标名称列表。

train: /home/lgzn/datasets/farmland_dataset/train.txt
val: /home/lgzn/datasets/farmland_dataset/val.txt
test: /home/lgzn/datasets/farmland_dataset/test.txt

nc: 1
names:
  0: farmland

2.2、使用自定义数据集训练

修改.yaml配置文件的路径,测试能否使用刚才制作的这个数据集进行训练。

yolo train data='/home/lgzn/datasets/farmland_dataset/farmland.yaml' model=yolov8n.pt epochs=2 lr0=0.01

如果和之前文章中使用coco128数据集的训练输出日志流程差不多,没有报错,这一步就完成了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1395398.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Mysql:重点且常用的 SQL 标签整理

目录 1 <resultMap> 标签 2 <sql> 标签 3 <where> 标签 4 <if> 标签 5 <trim> 标签 6 <foreach> 标签 7 <set> 标签 1 <resultMap> 标签 比如以下代码&#xff1a; <resultMap type"SysCollege" id&qu…

Scrcpy:掌握你的Android设备

Scrcpy&#xff1a;掌握你的Android设备 本文将介绍Scrcpy工具&#xff0c;它是一种强大的安卓设备控制工具&#xff0c;可以实现屏幕镜像、操作控制等功能。我们将探讨Scrcpy的基本原理和工作方式&#xff0c;并介绍如何使用Scrcpy连接和控制安卓设备。此外&#xff0c;我们还…

旅游项目day04

1. JWT有效期 封装用户登录对象&#xff0c; 在指定时间过期 2. 有些接口需要登录&#xff1f;有些不需要登录&#xff1f; 后端如何知道a需要登录&#xff0c;b不需要登录&#xff1f; 注解。 3. 目的地 一个区域下面包含多个目的地 数据库表&#xff1a; 1. 区域表 2.…

VS2022联合Qt5开发学习9(QT5.12.3鼠标按下、释放、移动事件以及Qt上取标注点)

在研究医学图像可视化的时候&#xff0c;鼠标响应这里一直都有问题。研究了几天VTK的取点&#xff0c;还是会和Qt冲突。所以现在试试Qt的方式取点&#xff0c;看看能不能实现我的功能。 查了很多资料&#xff0c;这篇博文里的实例有部分参考了祥知道-CSDN博客这位博主的博客[Q…

【Ant Design of Vue】Modal.confirm无法关闭的bug

一、问题 在使用 Ant Design Vue 的 Modal.confirm 确认框时&#xff0c;出现了点击取消和确定后 Modal.confirm 确认框无法关闭的问题 二、代码 代码完全是 copy 的官网的代码&#xff0c;但是 copy 到本地后就会出现上述问题 <template><a-button click"sho…

基于gd32f103移植freemodbus master 主栈

1.移植freemodbus master需要先移植RT-Thread操作系统 GD32F103C8T6移植 RTT Nano 教程-CSDN博客 2.移植freemodbus master协议栈 在移植了RTT以后,我们需要移植就只有串口相关的函数 移植freemodbus master协议栈具体步骤 下载移植freemodbus master协议栈 源码添加协议栈…

ora-12154无法解析指定的连接标识符

用户反映查询的时候报错ora-12154 这个系统只做历史数据查询使用&#xff0c;使用并不平凡&#xff0c;该数据库曾做过一次服务器间的迁移。 用户描述&#xff0c;所有oracle客户端查询该视图都报tns错误&#xff0c;一般ora-12154会发生在连接数据库时&#xff0c;因为tns配…

Python数据分析案例36——基于神经网络的AQI多步预测(空气质量预测)

案例背景 不知道大家发现了没&#xff0c;现在的神经网络做时间序列的预测都是单步预测&#xff0c;即(需要使用X的t-n期到X的t-1期的数据去预测X的t期的数据)&#xff0c;这种预测只能预测一个点&#xff0c;我需要预测X的t1期的数据就没办法了&#xff0c;有的同学说可以把预…

Vue 3 hooks的基本使用及疑问

前言 vue3也用过一段时间了&#xff0c;hooks听说过&#xff0c;但是一直没有用过。公司的前端项目里也没有相应的应用&#xff0c;因此打算系统的学习一下。 hooks与普通函数的区别 以实现一个加法功能为例。 普通函数未抽离 <template><div class"box&quo…

【Vue】Vue 路由的配置及使用

目录捏 前言一、路由是什么&#xff1f;1.前端路由2.后端路由 二、路由配置1.安装路由2.配置路由 三、路由使用1.route 与 router2. 声明式导航3. 指定组件的呈现位置 四、嵌套路由&#xff08;多级路由&#xff09;五、路由重定向1.什么是路由重定向&#xff1f;2.设置 redire…

接口自动化测试框架设计

文章目录 接口测试的定义接口测试的意义接口测试的测试用例设计接口测试的测试用例设计方法postman主要功能请求体分类JSON数据类型postman内置参数postman变量全局变量环境变量 postman断言JSON提取器正则表达式提取器Cookie提取器postman加密接口签名 接口自动化测试基础getp…

JVM实战(28)——模拟Metaspace内存溢出

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…

15.云原生之k8s容灾与恢复实战

云原生专栏大纲 文章目录 Velero与etcd介绍Velero与etcd备份应用场景Velero与etcd在k8s备份上的区别 Velero备份恢复流程备份工作流程Velero备份时&#xff0c;若k8s集群发送变化&#xff0c;会发发生情况&#xff1f;Velero 备份pv&#xff0c;pv中数据变化&#xff0c;会发发…

C++ //练习 1.25 借助网站上的Sales_item.h头文件,编译并运行本节给出的书店程序。

C Primer&#xff08;第5版&#xff09; 练习 1.25 练习 1.25 借助网站上的Sales_item.h头文件&#xff0c;编译并运行本节给出的书店程序。 环境&#xff1a;Linux Ubuntu&#xff08;云服务器&#xff09; 工具&#xff1a;vim 代码块 /********************************…

Flutter中使用minio_new库

前言 在移动开发中&#xff0c;我们常常会遇到需要在App中处理文件上传和下载的需求。Minio是一个开源的对象存储服务&#xff0c;它兼容Amazon S3云存储服务接口&#xff0c;可以用于存储大规模非结构化的数据。 开始之前 在pubspec.yaml文件中添加minio_new库的依赖&#xf…

最终Docker6:nacos集群部署

目录 mysql容器构建 1.进入soft 文件夹&#xff0c;创建mysql文件夹 2.进入conf文件夹 放入my.conf 配置文件 3.运行mysql容器 4.进入script文件夹 导入 sql文件 5.进入mysql 容器 并登录 6.创建nacos 数据库并使用&#xff0c;运行nacos.sql文件 7.授予用户所有权限 部…

loading stable diffusion model: FileNotFoundError解决方案

大家好&#xff0c;我是水滴~~ 本文主要介绍在安装 stable-diffusion-webui 时出现的 loading stable diffusion model: FileNotFoundError 问题的解决方案&#xff0c;希望能对你有所帮助。 文章目录 问题描述解决方案 问题描述 在安装 stable-diffusion-webui 过程中出现 l…

Linux环境下,针对QT软件工程搭建C++Test单元测试环境的操作指南

文章目录 前言一、安装QT二、安装CTest三、使用QT生成.bdf文件四、创建CTest工程注意事项 前言 CTest是Parasoft公司出品的一款可以针对C/C源代码进行静态分析、单元测试、集成测试的测试工具。本文主要讲解如何在Linux环境下&#xff0c;搭建QT插件版的CTest测试环境。 一、…

大数据开发之Hadoop(优化新特征)

第 1 章&#xff1a;HDFS-故障排除 注意&#xff1a;采用三台服务器即可&#xff0c;恢复到Yarn开始的服务器快照。 1.1 集群安全模块 1、安全模式&#xff1a;文件系统只接收读数据请求&#xff0c;而不接收删除、修改等变更请求 2、进入安全模式场景 1&#xff09;NameNod…

GPT应用开发:GPT插件开发指南

欢迎阅读本系列文章&#xff01;我将带你一起探索如何利用OpenAI API开发GPT应用。无论你是编程新手还是资深开发者&#xff0c;都能在这里获得灵感和收获。 本文&#xff0c;我们将继续展示聊天API中插件的使用方法&#xff0c;让你能够轻松驾驭这个强大的工具。 插件运行效…