【RPC】网络通信:哪种网络IO模型最适合RPC框架?

news2024/11/15 11:06:04

一、背景

RPC是解决进程间通信的一种方式。一次RPC调用,本质就是服务消费者与服务提供者间的一次网络信息交换的过程。服务调用者通过网络IO发送一条请求消息,服务提供者接收并解析,处理完相关的业务逻辑之后,再发送一条响应消息给服务调用者,服务调用者接收并解析响应消息,处理完相关的响应逻辑,一次RPC调用便结束了。可以说,网络通信是整个RPC调用流程的基础。

二、常见的网络IO模型

那说到网络通信,就不得不提一下网络IO模型。为什么要讲网络IO模型呢?因为所谓的两台PC机之间的网络通信,实际上就是两台PC机对网络IO的操作。

常见的网络IO模型分为四种:同步阻塞IO(BIO)、同步非阻塞IO(NIO)、IO多路复用和异步非阻塞IO(AIO)。在这四种IO模型中,只有AIO为异步IO,其他都是同步IO。

其中,最常用的就是同步阻塞IO和IO多路复用。

2.1、阻塞IO(blocking IO)

同步阻塞IO是最简单、最常见的IO模型,在Linux中,默认情况下所有的socket都是blocking的,先看下操作流程。

首先,应用进程发起IO系统调用后,应用进程被阻塞,转到内核空间处理。之后,内核开始等待数据,等待到数据之后,再将内核中的数据拷贝到用户内存中,整个IO处理完毕后返回进程。最后应用的进程解除阻塞状态,运行业务逻辑。

这里我们可以看到,系统内核处理IO操作分为两个阶段——等待数据和拷贝数据。而在这两个阶段中,应用进程中IO操作的线程会一直都处于阻塞状态,如果是基于Java多线程开发,那么每一个IO操作都要占用线程,直至IO操作结束。

这个流程就好比我们去餐厅吃饭,我们到达餐厅,向服务员点餐,之后要一直在餐厅等待后厨将菜做好,然后服务员会将菜端给我们,我们才能享用。

2.2、IO多路复用(IO multiplexing)

多路复用IO是在高并发场景中使用最为广泛的一种IO模型,如Java的NIO、Redis、Nginx的底层实现就是此类IO模型的应用,经典的Reactor模式也是基于此类IO模型。

那么什么是IO多路复用呢?通过字面上的理解,多路就是指多个通道,也就是多个网络连接的IO,而复用就是指多个通道复用在一个复用器上。

多个网络连接的IO可以注册到一个复用器(select)上,当用户进程调用了select,那么整个进程会被阻塞。同时,内核会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从内核中拷贝到用户进程。

在多路复用模型中,内核仅有一条线程负责处理所有连接,所有网络请求/连接(Socket)都会利用通道Channel注册到选择器上,然后监听器负责监听所有的连接,过程如下:

阶段一:

  • 用户进程调用select,指定要监听的FD集合

  • 核监听FD对应的多个socket

  • 任意一个或多个socket数据就绪则返回readable

  • 此过程中用户进程阻塞

阶段二:

  • 用户进程找到就绪的socket

  • 依次调用recvfrom读取数据

  • 内核将数据拷贝到用户空间

  • 用户进程处理数据

当用户去读取数据的时候,不再去直接调用recvfrom了,而是调用select的函数,select函数会将需要监听的数据交给内核,由内核去检查这些数据是否就绪了,如果说这个数据就绪了,就会通知应用程序数据就绪,然后来读取数据,再从内核中把数据拷贝给用户态,完成数据处理,如果N多个FD一个都没处理完,此时就进行等待。

同样好比我们去餐厅吃饭,这次我们是几个人一起去的,我们专门留了一个人在餐厅排号等位,其他人就去逛街了,等排号的朋友通知我们可以吃饭了,我们就直接去享用了。

2.3、为什么说阻塞lO和lO多路复用最为常用?

了解完二者的机制,我们就可以回到起初的问题了——我为什么说阻塞IO和IO多路复用最为常用。对比这四种网络IO模型:阻塞IO、非阻塞IO、IO多路复用、异步IO。实际在网络IO的应用上,需要的是系统内核的支持以及编程语言的支持。

在系统内核的支持上,现在大多数系统内核都会支持阻塞IO、非阻塞IO和IO多路复用,但像信号驱动IO、异步IO,只有高版本的Linux系统内核才会支持。

在编程语言上,无论C++还是Java,在高性能的网络编程框架的编写上,大多数都是基于Reactor模式,其中最为典型的便是Java的Netty框架,而Reactor模式是基于IO多路复用的。当然,在非高并发场景下,同步阻塞IO是最为常见的。

综合来讲,在这四种常用的IO模型中,应用最多的、系统内核与编程语言支持最为完善的,便是阻塞IO和IO多路复用。这两种IO模型,已经可以满足绝大多数网络IO的应用场景。

2.4、RPC框架在网络通信上倾向选择哪种网络IO模型?

IO多路复用更适合高并发的场景,可以用较少的进程(线程)处理较多的socket的IO请求,但使用难度比较高。当然高级的编程语言支持得还是比较好的,比如Java语言有很多的开源框架对Java原生API做了封装,如Netty框架,使用非常简便;而GO语言,语言本身对IO多路复用的封装就已经很简洁了。

而阻塞IO与IO多路复用相比,阻塞IO每处理一个socket的IO请求都会阻塞进程(线程),但使用难度较低。在并发量较低、业务逻辑只需要同步进行IO操作的场景下,阻塞IO已经满足了需求,并且不需要发起select调用,开销上还要比IO多路复用低。

RPC调用在大多数的情况下,是一个高并发调用的场景,考虑到系统内核的支持、编程语言的支持以及IO模型本身的特点,在RPC框架的实现中,在网络通信的处理上,我们会选择IO多路复用的方式。开发语言的网络通信框架的选型上,我们最优的选择是基于Reactor模式实现的框架,如Java语言,首选的框架便是Netty框架(Java还有很多其他NIO框架,但目前Netty应用得最为广泛),并且在Linux环境下,也要开启epoll来提升系统性能(Windows环境下是无法开启epoll的,因为系统内核不支持)。

了解完以上内容,我们可以继续看这样一个关键问题——零拷贝。在我们应用的过程中,他是非常重要的。

三、什么是零拷贝?

系统内核处理IO操作分为两个阶段——等待数据和拷贝数据。等待数据,就是系统内核在等待网卡接收到数据后,把数据写到内核中;而拷贝数据,就是系统内核在获取到数据后,将数据拷贝到用户进程的空间中。以下是具体流程:

应用进程的每一次写操作,都会把数据写到用户空间的缓冲区中,再由CPU将数据拷贝到系统内核的缓冲区中,之后再由DMA将这份数据拷贝到网卡中,最后由网卡发送出去。这里我们可以看到,一次写操作数据要拷贝两次才能通过网卡发送出去,而用户进程的读操作则是将整个流程反过来,数据同样会拷贝两次才能让应用程序读取到数据。

应用进程的一次完整的读写操作,都需要在用户空间与内核空间中来回拷贝,并且每一次拷贝,都需要CPU进行一次上下文切换(由用户进程切换到系统内核,或由系统内核切换到用户进程),这样是不是很浪费CPU和性能呢?那有没有什么方式,可以减少进程间的数据拷贝,提高数据传输的效率呢?

这时我们就需要零拷贝(Zero-copy)技术。

所谓的零拷贝,就是取消用户空间与内核空间之间的数据拷贝操作,应用进程每一次的读写操作,都可以通过一种方式,让应用进程向用户空间写入或者读取数据,就如同直接向内核空间写入或者读取数据一样,再通过DMA将内核中的数据拷贝到网卡,或将网卡中的数据copy到内核。

那怎么做到零拷贝?你想一下是不是用户空间与内核空间都将数据写到一个地方,就不需要拷贝了?此时你有没有想到虚拟内存?

零拷贝有两种解决方式,分别是 mmap+write 方式和 sendfile 方式,mmap+write方式的核心原理就是通过虚拟内存来解决的。

参考:【操作系统】一文带你深入浅出零拷贝技术

四、Netty中的零拷贝

我刚才讲到,RPC框架在网络通信框架的选型上,我们最优的选择是基于Reactor模式实现的框架,如Java语言,首选的便是Netty框架。那么Netty框架是否也有零拷贝机制呢?Netty框架中的零拷贝和我之前讲的零拷贝又有什么不同呢?

刚才我讲的零拷贝是操作系统层面上的零拷贝,主要目标是避免用户空间与内核空间之间的数据拷贝操作,可以提升CPU的利用率。

而Netty的零拷贝则不大一样,他完全站在了用户空间上,也就是JVM上,它的零拷贝主要是偏向于数据操作的优化上。

在传输过程中,RPC并不会把请求参数的所有二进制数据整体一下子发送到对端机器上,中间可能会拆分成好几个数据包,也可能会合并其他请求的数据包,所以消息都需要有边界。那么一端的机器收到消息之后,就需要对数据包进行处理,根据边界对数据包进行分割和合并,最终获得一条完整的消息。

那收到消息后,对数据包的分割和合并,是在用户空间完成,还是在内核空间完成的呢?

当然是在用户空间,因为对数据包的处理工作都是由应用程序来处理的,那么这里有没有可能存在数据的拷贝操作?可能会存在,当然不是在用户空间与内核空间之间的拷贝,是用户空间内部内存中的拷贝处理操作。Netty的零拷贝就是为了解决这个问题,在用户空间对数据操作进行优化。

那么Netty是怎么对数据操作进行优化的呢?

  • Netty 提供了 CompositeByteBuf 类,它可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免了各个 ByteBuf 之间的拷贝。

  • ByteBuf 支持 slice 操作,因此可以将 ByteBuf 分解为多个共享同一个存储区域的 ByteBuf,避免了内存的拷贝。

  • 通过 wrap 操作,我们可以将 byte[] 数组、ByteBuf、ByteBuffer 等包装成一个 Netty ByteBuf 对象, 进而避免拷贝操作。

Netty框架中很多内部的ChannelHandler实现类,都是通过CompositeByteBuf、slice、wrap操作来处理TCP传输中的拆包与粘包问题的。

那么Netty有没有解决用户空间与内核空间之间的数据拷贝问题的方法呢?

Netty 的 ByteBuffer 可以采用 Direct Buffers,使用堆外直接内存进行Socket的读写操作,最终的效果与我刚才讲解的虚拟内存所实现的效果是一样的。

Netty 还提供 FileRegion 中包装 NIO 的 FileChannel.transferTo() 方法实现了零拷贝,这与Linux 中的 sendfile 方式在原理上也是一样的。

五、总结

考虑到系统内核的支持、编程语言的支持以及IO模型本身的特点,RPC框架在网络通信的处理上,我们更倾向选择IO多路复用的方式。

零拷贝带来的好处就是避免没必要的CPU拷贝,让CPU解脱出来去做其他的事,同时也减少了CPU在用户空间与内核空间之间的上下文切换,从而提升了网络通信效率与应用程序的整体性能。

而Netty的零拷贝与操作系统的零拷贝是有些区别的,Netty的零拷贝偏向于用户空间中对数据操作的优化,这对处理TCP传输中的拆包粘包问题有着重要的意义,对应用程序处理请求数据与返回数据也有重要的意义。

在 RPC框架的开发与使用过程中,我们要深入了解网络通信相关的原理知识,尽量做到零拷贝,如使用Netty框架;我们要合理使用ByteBuf子类,做到完全零拷贝,提升RPC框架的整体性能。

六、参考

  • 【操作系统】IO模型篇之从BIO、NIO、AIO到内核select、epoll剖析

  • 【操作系统】高性能网络模式:Reactor 和 Proactor

  • 【操作系统】一文带你深入浅出零拷贝技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1391206.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Qt命令行安装:linux(ubuntu)

起因是我上一篇文章说的,官网下的安装包卡死在第一步安装界面了。 于是我就问GPT有没有纯命令行的安装方式,果然是有的。 在Ubuntu上安装Qt可以使用以下命令: 1. 首先,添加Qt的官方存储库到系统中: sudo add-apt-rep…

Pandas.DataFrame.groupby() 数据分组(数据透视、分类汇总) 详解 含代码 含测试数据集 随Pandas版本持续更新

关于Pandas版本: 本文基于 pandas2.1.2 编写。 关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。 Pandas稳定版更新及变动内容整合专题: Pandas稳定版更新及变动迭持续更新。 Pandas API参…

使用PyTorch实现混合专家(MoE)模型

Mixtral 8x7B 的推出在开放 AI 领域引发了广泛关注,特别是混合专家(Mixture-of-Experts:MoEs)这一概念被大家所认知。混合专家(MoE)概念是协作智能的象征,体现了“整体大于部分之和”的说法。MoE模型汇集了各种专家模型…

Transformer详解(附代码实现及翻译任务实现)

一:了解背景和动机 阅读Transformer论文: 阅读原始的Transformer论文:“Attention is All You Need”,由Vaswani等人于2017年提出,是Transformer模型的开创性工作。 二:理解基本构建块 注意力机制&#…

软件研发过程中,项目管理工具应该如何选择?

本文作者:极狐GitLab 资深解决方案架构师 尹学峰 许多企业依旧在用老旧的方式,如Excel离线表格进行项目管理。表格无法简介的呈现出项目的任务分解、完成进度、任务类别等多种项目管理过程中必备的要求,更无法实现与企业员工的日常即时通信系…

MATLAB - 加载预定义的机器人模型

系列文章目录 前言 一、 要快速访问常见的机器人模型,可使用 loadrobot 功能,该功能可加载市售的机器人模型,如 Universal Robots™ UR10 cobot、Boston Dynamics™ Atlas 人形机器人和 KINOVA™ Gen 3 机械手。探索如何生成关节配置并与机器…

day02_计算机常识丶第一个程序丶注释丶关键字丶标识符

计算机常识 计算机如何存储数据 计算机世界中只有二进制。那么在计算机中存储和运算的所有数据都要转为二进制。包括数字、字符、图片、声音、视频等。 进制 进制也就是进位计数制,是人为定义的带进位的计数方法 实例: // 在java 中 可以使用不同…

蓝桥杯备赛day02 -- 算法训练题 拿金币Java

目录 题目: 问题描述 输入格式 输出格式 解题过程 第一步 定义dp数组 第二步 确定 dp 数组递推公式 第三步 dp数组的初始化 第四步 dp数组的遍历顺序 第五步 举例说明 报错:内存超限 用dp数组去存储位置上的金币 dp数组从二维降为一维 收获&a…

如何在CentOS 7 中搭建Python 3.0 环境

1、下载 通过https://www.python.org/ftp/python/下载Python安装包,这里下载Python-3.10.9.tgz; 2、上传 借助MobaXterm等工具将Python安装包上传至/opt目录; 3、解压 将JDK压缩文件解压至/opt目录:tar -xvf /opt/Python-3.1…

idea设置编辑器背景颜色

文章目录 一、Ided常用工具栏显示二、更改idea主题设置三、设置代码编辑器背景颜色为豆沙绿四、设置新项目 默认Jdk配置、maven配置1、settings for new projects2、structre for new projects 五、修改代码中注释的字体颜色六、设置编辑器字体大小七、文件编码的设置(可以设置…

【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】

实验一、数论基础(上) 一、实验目的 1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫; 2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好…

Python - 深夜数据结构与算法之 DP 串讲

目录 一.引言 二.DP 知识点回顾 1.递归 2.分治 3.动态规划 三.DP 经典题目回顾 1.Climb-Stairs [70] 2.Unique-Paths [62] 3.House-Robber [198] 4.Min-Path-Sum [64] 5.Best-Time-Sell-Stock [121] 6.Min-Cost-Climb [746] 7.Edit-Distance [72] 8.Longest-Sub-…

Android PendingIntent 闪退

先来给大家推荐一个我日常会使用到的图片高清处理在线工具,主要是免费,直接白嫖 。 有时候我看到一张图片感觉很不错,但是图片清晰度不合我意,就想有没有什么工具可以处理让其更清晰, 网上随便搜下就能找到&#xff…

C++设计模式(李建忠)笔记1

C设计模式(李建忠) 本文是学习笔记,如有侵权,请联系删除。 参考链接 Youtube: C设计模式 Gtihub源码与PPT:https://github.com/ZachL1/Bilibili-plus 豆瓣: 设计模式–可复用面向对象软件的基础 文章目录 C设计模…

编译原理1.1习题 语言处理器

图源:文心一言 编译原理习题整理~🥝🥝 作为初学者的我,这些习题主要用于自我巩固。由于是自学,答案难免有误,非常欢迎各位小伙伴指正与讨论!👏💡 第1版:自…

目标检测-One Stage-YOLOv7

文章目录 前言一、YOLOv7的不同版本二、YOLOv7的网络结构二、YOLOv7的创新点三、创新点的详细解读ELAN和E-ELANBoF训练技巧计划型重参化卷积辅助训练模块标签分配Lead head guided label assignerCoarse-to-fine lead head guided label assigner 基于级联模型的复合缩放方法 总…

开发知识点-JAVA-springboot

springboot springbootConfiguration注解的底层核心原理Bean注解的底层核心原理 springboot Configuration注解的底层核心原理 https://www.bilibili.com/video/BV1rq4y1E7gK/?spm_id_from333.999.0.0&vd_sourcef21773b7086456ae21a58a6cc59023be spring.io 全家桶 24…

【Emgu CV教程】5.4、几何变换之图像翻转

今天讲解的两个函数,可以实现以下样式的翻转。 水平翻转:将图像沿Y轴(图像最左侧垂直边缘)翻转的操作。原始图像中位于左侧的内容将移动到目标图像的右侧,原始图像中位于右侧的内容将移动到目标图像的左侧。垂直翻转:将图像沿X轴…

智能小程序小部件(Widget)导航、地图、画布等组件,以及开放能力、原生组件说明

智能小程序小部件(Widget)导航、地图、画布等组件,以及开放能力、原生组件说明。 导航组件 navigator 页面链接,控制小程序的跳转。navigator 子节点的背景色应为透明色。 属性说明 属性名类型默认值必填说明urlstring是跳转地址deltanumber1否当 …

用Spark在大数据平台DataBricks轻松处理数据

Apache Spark是一个强大的开源分布式计算系统,专为大规模数据处理而设计。而DataBricks则提供了一个基于云的环境,使得在Spark上处理数据变得更加高效和便捷。本文将介绍如何在DataBricks平台上使用Spark轻松处理大数据。DataBricks是一个基于云的大数据…