使用PyTorch实现混合专家(MoE)模型

news2024/11/15 11:13:20

Mixtral 8x7B 的推出在开放 AI 领域引发了广泛关注,特别是混合专家(Mixture-of-Experts:MoEs)这一概念被大家所认知。混合专家(MoE)概念是协作智能的象征,体现了“整体大于部分之和”的说法。MoE模型汇集了各种专家模型的优势,以提供更好的预测。它是围绕一个门控网络和一组专家网络构建的,每个专家网络都擅长特定任务的不同方面

在本文中,我将使用Pytorch来实现一个MoE模型。在具体代码之前,让我们先简单介绍一下混合专家的体系结构。

MoE架构

MoE由两种类型的网络组成:(1)专家网络和(2)门控网络。

专家网络:专家网络是专有模型,每个模型都经过训练,在数据的一个子集中表现出色。MoE的理念是拥有多名优势互补的专家,确保对问题空间的全面覆盖。

门控网络:门控网络充当指挥,协调或管理个别专家的贡献。它学习(或权衡)哪个网络擅长处理哪种类型的输入。经过训练的门控网络可以评估新的输入向量,并根据专家的熟练程度将处理责任分配给最合适的专家或专家组合。门控网络根据专家的输出与当前输入的相关性动态调整其权重,确保定制响应。

上图显示了MoE中的处理流程。混合专家模型的优点在于它的简单。通过学习复杂的问题空间以及专家在解决问题时的反应,MoE模型有助于产生比单个专家更好的解决方案。门控网络作为一个有效的管理者,评估情景并将任务传递给最佳专家。当新数据输入时,模型可以通过重新评估专家对新输入的优势来适应,从而产生灵活的学习方法。

MoE为部署机器学习模型提供了巨大的好处。以下是两个显著的好处。

MoE的核心优势在于其专家网络的多元化和专业化。MoE的设置能够以单一模型可能难以达到的精度处理多方面的问题。

MoE具有固有的可伸缩性。随着任务复杂性的增加,可以在不改变其他专家模型的情况下将更多专家无缝地集成到系统中,扩大专业知识的范围。也就是说,MoE可以帮助将预先训练过的专家打包到机器学习系统中。

混合专家模型在许多领域都有应用,包括推荐系统、语言建模和各种复杂的预测任务。有传言称,GPT-4是由多个专家组成的。尽管我们无法确认,但类似gpt -4的模型将通过MoE方法利用多个模型的力量来提供最佳结果。

Pytorch代码

我们这里不讨论Mixtral 8x7B这种大模型中使用的MOE技术,而是我们编写一个简单的、可以应用在任何任务中的自定义MOE,通过代码我们可以了解MOE的工作原理,这样对理解MOE在大模型中的工作方式是非常有帮助的。

下面我们将一段一段地介绍PyTorch的代码实现。

导入库:

 import torch
 import torch.nn as nn
 import torch.optim as optim

定义专家模型:

 classExpert(nn.Module):
     def__init__(self, input_dim, hidden_dim, output_dim):
         super(Expert, self).__init__()
         self.layer1=nn.Linear(input_dim, hidden_dim)
         self.layer2=nn.Linear(hidden_dim, output_dim)
 
     defforward(self, x):
         x=torch.relu(self.layer1(x))
         returntorch.softmax(self.layer2(x), dim=1)

这里我们定义了一个简单的专家模型,可以看到它是一个2层的mlp,使用了relu激活,最后使用softmax输出分类概率。

定义门控模型:

 # Define the gating model
 classGating(nn.Module):
     def__init__(self, input_dim,
                  num_experts, dropout_rate=0.1):
         super(Gating, self).__init__()
 
         # Layers
         self.layer1=nn.Linear(input_dim, 128)
         self.dropout1=nn.Dropout(dropout_rate)
 
         self.layer2=nn.Linear(128, 256)
         self.leaky_relu1=nn.LeakyReLU()
         self.dropout2=nn.Dropout(dropout_rate)
 
         self.layer3=nn.Linear(256, 128)
         self.leaky_relu2=nn.LeakyReLU()
         self.dropout3=nn.Dropout(dropout_rate)
 
         self.layer4=nn.Linear(128, num_experts)
 
     defforward(self, x):
         x=torch.relu(self.layer1(x))
         x=self.dropout1(x)
 
         x=self.layer2(x)
         x=self.leaky_relu1(x)
         x=self.dropout2(x)
 
         x=self.layer3(x)
         x=self.leaky_relu2(x)
         x=self.dropout3(x)
 
         returntorch.softmax(self.layer4(x), dim=1)

门控模型更复杂,有三个线性层和dropout层用于正则化以防止过拟合。它使用ReLU和LeakyReLU激活函数引入非线性。最后一层的输出大小等于专家的数量,并对这些输出应用softmax函数。输出权重,这样可以将专家的输出与之结合。

说明:其实门控网络,或者叫路由网络是MOE中最复杂的部分,因为它涉及到控制输入到那个专家模型,所以门控网络也有很多个设计方案,例如(如果我没记错的话)Mixtral 8x7B 只是取了8个专家中的top2。所以我们这里不详细讨论各种方案,只是介绍其基本原理和代码实现。

完整的MOE模型:

 classMoE(nn.Module):
     def__init__(self, trained_experts):
         super(MoE, self).__init__()
         self.experts=nn.ModuleList(trained_experts)
         num_experts=len(trained_experts)
         # Assuming all experts have the same input dimension
         input_dim=trained_experts[0].layer1.in_features
         self.gating=Gating(input_dim, num_experts)
 
     defforward(self, x):
         # Get the weights from the gating network
         weights=self.gating(x)
 
         # Calculate the expert outputs
         outputs=torch.stack(
             [expert(x) forexpertinself.experts], dim=2)
 
         # Adjust the weights tensor shape to match the expert outputs
         weights=weights.unsqueeze(1).expand_as(outputs)
 
         # Multiply the expert outputs with the weights and
         # sum along the third dimension
         returntorch.sum(outputs*weights, dim=2)

这里主要看前向传播的代码,通过输入计算出权重和每个专家给出输出的预测,最后使用权重将所有专家的结果求和最终得到模型的输出。

这个是不是有点像“集成学习”

测试

下面我们来对我们的实现做个简单的测试,首先生成一个简单的数据集:

 # Generate the dataset
 num_samples=5000
 input_dim=4
 hidden_dim=32
 
 # Generate equal numbers of labels 0, 1, and 2
 y_data=torch.cat([
     torch.zeros(num_samples//3),
     torch.ones(num_samples//3),
     torch.full((num_samples-2* (num_samples//3),), 2)  # Filling the remaining to ensure exact num_samples
 ]).long()
 
 # Biasing the data based on the labels
 x_data=torch.randn(num_samples, input_dim)
 
 foriinrange(num_samples):
     ify_data[i] ==0:
         x_data[i, 0] +=1  # Making x[0] more positive
     elify_data[i] ==1:
         x_data[i, 1] -=1  # Making x[1] more negative
     elify_data[i] ==2:
         x_data[i, 0] -=1  # Making x[0] more negative
 
 # Shuffle the data to randomize the order
 indices=torch.randperm(num_samples)
 x_data=x_data[indices]
 y_data=y_data[indices]
 
 # Verify the label distribution
 y_data.bincount()
 
 # Shuffle the data to ensure x_data and y_data remain aligned
 shuffled_indices=torch.randperm(num_samples)
 x_data=x_data[shuffled_indices]
 y_data=y_data[shuffled_indices]
 
 # Splitting data for training individual experts
 # Use the first half samples for training individual experts
 x_train_experts=x_data[:int(num_samples/2)]
 y_train_experts=y_data[:int(num_samples/2)]
 
 mask_expert1= (y_train_experts==0) | (y_train_experts==1)
 mask_expert2= (y_train_experts==1) | (y_train_experts==2)
 mask_expert3= (y_train_experts==0) | (y_train_experts==2)
 
 # Select an almost equal number of samples for each expert
 num_samples_per_expert= \
 min(mask_expert1.sum(), mask_expert2.sum(), mask_expert3.sum())
 
 x_expert1=x_train_experts[mask_expert1][:num_samples_per_expert]
 y_expert1=y_train_experts[mask_expert1][:num_samples_per_expert]
 
 x_expert2=x_train_experts[mask_expert2][:num_samples_per_expert]
 y_expert2=y_train_experts[mask_expert2][:num_samples_per_expert]
 
 x_expert3=x_train_experts[mask_expert3][:num_samples_per_expert]
 y_expert3=y_train_experts[mask_expert3][:num_samples_per_expert]
 
 # Splitting the next half samples for training MoE model and for testing
 x_remaining=x_data[int(num_samples/2)+1:]
 y_remaining=y_data[int(num_samples/2)+1:]
 
 split=int(0.8*len(x_remaining))
 x_train_moe=x_remaining[:split]
 y_train_moe=y_remaining[:split]
 
 x_test=x_remaining[split:]
 y_test=y_remaining[split:]
 
 print(x_train_moe.shape,"\n", x_test.shape,"\n",
       x_expert1.shape,"\n",
       x_expert2.shape,"\n", x_expert3.shape)

这段代码创建了一个合成数据集,其中包含三个类标签——0、1和2。基于类标签对特征进行操作,从而在数据中引入一些模型可以学习的结构。

数据被分成针对个别专家的训练集、MoE模型和测试集。我们确保专家模型是在一个子集上训练的,这样第一个专家在标签0和1上得到很好的训练,第二个专家在标签1和2上得到更好的训练,第三个专家看到更多的标签2和0。

我们期望的结果是:虽然每个专家对标签0、1和2的分类准确率都不令人满意,但通过结合三位专家的决策,MoE将表现出色。

模型初始化和训练设置:

 # Define hidden dimension
 output_dim = 3
 hidden_dim = 32
 
 epochs = 500
 learning_rate = 0.001
 
 
 # Instantiate the experts
 expert1 = Expert(input_dim, hidden_dim, output_dim)
 expert2 = Expert(input_dim, hidden_dim, output_dim)
 expert3 = Expert(input_dim, hidden_dim, output_dim)
 
 # Set up loss
 criterion = nn.CrossEntropyLoss()
 
 # Optimizers for experts
 optimizer_expert1 = optim.Adam(expert1.parameters(), lr=learning_rate)
 optimizer_expert2 = optim.Adam(expert2.parameters(), lr=learning_rate)
 optimizer_expert3 = optim.Adam(expert3.parameters(), lr=learning_rate)

实例化了专家模型和MoE模型。定义损失函数来计算训练损失,并为每个模型设置优化器,在训练过程中执行权重更新。

训练的步骤也非常简单

 # Training loop for expert 1
 for epoch in range(epochs):
     optimizer_expert1.zero_grad()
     outputs_expert1 = expert1(x_expert1)
     loss_expert1 = criterion(outputs_expert1, y_expert1)
     loss_expert1.backward()
     optimizer_expert1.step()
 
 # Training loop for expert 2
 for epoch in range(epochs):
     optimizer_expert2.zero_grad()
     outputs_expert2 = expert2(x_expert2)
     loss_expert2 = criterion(outputs_expert2, y_expert2)
     loss_expert2.backward()
     optimizer_expert2.step()
 
 # Training loop for expert 3
 for epoch in range(epochs):
     optimizer_expert3.zero_grad()
     outputs_expert3 = expert3(x_expert3)
     loss_expert3 = criterion(outputs_expert3, y_expert3)
     loss_expert3.backward()

每个专家使用基本的训练循环在不同的数据子集上进行单独的训练。循环迭代指定数量的epoch。

下面是我们MOE的训练

 # Create the MoE model with the trained experts
 moe_model = MoE([expert1, expert2, expert3])
 
 # Train the MoE model
 optimizer_moe = optim.Adam(moe_model.parameters(), lr=learning_rate)
 for epoch in range(epochs):
     optimizer_moe.zero_grad()
     outputs_moe = moe_model(x_train_moe)
     loss_moe = criterion(outputs_moe, y_train_moe)
     loss_moe.backward()
     optimizer_moe.step()

MoE模型是由先前训练过的专家创建的,然后在单独的数据集上进行训练。训练过程类似于单个专家的训练,但现在门控网络的权值在训练过程中更新。

最后我们的评估函数:

 # Evaluate all models
 def evaluate(model, x, y):
     with torch.no_grad():
         outputs = model(x)
         _, predicted = torch.max(outputs, 1)
         correct = (predicted == y).sum().item()
         accuracy = correct / len(y)
     return accuracy

evaluate函数计算模型在给定数据上的精度(x代表样本,y代表预期标签)。准确度计算为正确预测数与预测总数之比。

结果如下:

 accuracy_expert1 = evaluate(expert1, x_test, y_test)
 accuracy_expert2 = evaluate(expert2, x_test, y_test)
 accuracy_expert3 = evaluate(expert3, x_test, y_test)
 accuracy_moe = evaluate(moe_model, x_test, y_test)
 
 print("Expert 1 Accuracy:", accuracy_expert1)
 print("Expert 2 Accuracy:", accuracy_expert2)
 print("Expert 3 Accuracy:", accuracy_expert3)
 print("Mixture of Experts Accuracy:", accuracy_moe)
 
 #Expert 1 Accuracy: 0.466
 #Expert 2 Accuracy: 0.496
 #Expert 3 Accuracy: 0.378
 #Mixture of Experts Accuracy: 0.614

可以看到

专家1正确预测了测试数据集中大约46.6%的样本的类标签。

专家2表现稍好,正确预测率约为49.6%。

专家3在三位专家中准确率最低,正确预测的样本约为37.8%。

而MoE模型显著优于每个专家,总体准确率约为61.4%。

总结

我们测试的输出结果显示了混合专家模型的强大功能。该模型通过门控网络将各个专家模型的优势结合起来,取得了比单个专家模型更高的精度。门控网络有效地学习了如何根据输入数据权衡每个专家的贡献,以产生更准确的预测。混合专家利用了各个模型的不同专业知识,在测试数据集上提供了更好的性能。

同时也说明我们可以在现有的任务上尝试使用MOE来进行测试,也可以得到更好的结果。

https://avoid.overfit.cn/post/d5c5a12aac9e48c296cace247b460b02

作者:Shahriar Hossain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1391201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Transformer详解(附代码实现及翻译任务实现)

一:了解背景和动机 阅读Transformer论文: 阅读原始的Transformer论文:“Attention is All You Need”,由Vaswani等人于2017年提出,是Transformer模型的开创性工作。 二:理解基本构建块 注意力机制&#…

软件研发过程中,项目管理工具应该如何选择?

本文作者:极狐GitLab 资深解决方案架构师 尹学峰 许多企业依旧在用老旧的方式,如Excel离线表格进行项目管理。表格无法简介的呈现出项目的任务分解、完成进度、任务类别等多种项目管理过程中必备的要求,更无法实现与企业员工的日常即时通信系…

MATLAB - 加载预定义的机器人模型

系列文章目录 前言 一、 要快速访问常见的机器人模型,可使用 loadrobot 功能,该功能可加载市售的机器人模型,如 Universal Robots™ UR10 cobot、Boston Dynamics™ Atlas 人形机器人和 KINOVA™ Gen 3 机械手。探索如何生成关节配置并与机器…

day02_计算机常识丶第一个程序丶注释丶关键字丶标识符

计算机常识 计算机如何存储数据 计算机世界中只有二进制。那么在计算机中存储和运算的所有数据都要转为二进制。包括数字、字符、图片、声音、视频等。 进制 进制也就是进位计数制,是人为定义的带进位的计数方法 实例: // 在java 中 可以使用不同…

蓝桥杯备赛day02 -- 算法训练题 拿金币Java

目录 题目: 问题描述 输入格式 输出格式 解题过程 第一步 定义dp数组 第二步 确定 dp 数组递推公式 第三步 dp数组的初始化 第四步 dp数组的遍历顺序 第五步 举例说明 报错:内存超限 用dp数组去存储位置上的金币 dp数组从二维降为一维 收获&a…

如何在CentOS 7 中搭建Python 3.0 环境

1、下载 通过https://www.python.org/ftp/python/下载Python安装包,这里下载Python-3.10.9.tgz; 2、上传 借助MobaXterm等工具将Python安装包上传至/opt目录; 3、解压 将JDK压缩文件解压至/opt目录:tar -xvf /opt/Python-3.1…

idea设置编辑器背景颜色

文章目录 一、Ided常用工具栏显示二、更改idea主题设置三、设置代码编辑器背景颜色为豆沙绿四、设置新项目 默认Jdk配置、maven配置1、settings for new projects2、structre for new projects 五、修改代码中注释的字体颜色六、设置编辑器字体大小七、文件编码的设置(可以设置…

【网络安全】【密码学】【北京航空航天大学】实验一、数论基础(上)【C语言和Java实现】

实验一、数论基础(上) 一、实验目的 1、通过本次实验,熟悉相关的编程环境,为后续的实验做好铺垫; 2、回顾数论学科中的重要基本算法,并加深对其的理解,为本学期密码学理论及实验课程打下良好…

Python - 深夜数据结构与算法之 DP 串讲

目录 一.引言 二.DP 知识点回顾 1.递归 2.分治 3.动态规划 三.DP 经典题目回顾 1.Climb-Stairs [70] 2.Unique-Paths [62] 3.House-Robber [198] 4.Min-Path-Sum [64] 5.Best-Time-Sell-Stock [121] 6.Min-Cost-Climb [746] 7.Edit-Distance [72] 8.Longest-Sub-…

Android PendingIntent 闪退

先来给大家推荐一个我日常会使用到的图片高清处理在线工具,主要是免费,直接白嫖 。 有时候我看到一张图片感觉很不错,但是图片清晰度不合我意,就想有没有什么工具可以处理让其更清晰, 网上随便搜下就能找到&#xff…

C++设计模式(李建忠)笔记1

C设计模式(李建忠) 本文是学习笔记,如有侵权,请联系删除。 参考链接 Youtube: C设计模式 Gtihub源码与PPT:https://github.com/ZachL1/Bilibili-plus 豆瓣: 设计模式–可复用面向对象软件的基础 文章目录 C设计模…

编译原理1.1习题 语言处理器

图源:文心一言 编译原理习题整理~🥝🥝 作为初学者的我,这些习题主要用于自我巩固。由于是自学,答案难免有误,非常欢迎各位小伙伴指正与讨论!👏💡 第1版:自…

目标检测-One Stage-YOLOv7

文章目录 前言一、YOLOv7的不同版本二、YOLOv7的网络结构二、YOLOv7的创新点三、创新点的详细解读ELAN和E-ELANBoF训练技巧计划型重参化卷积辅助训练模块标签分配Lead head guided label assignerCoarse-to-fine lead head guided label assigner 基于级联模型的复合缩放方法 总…

开发知识点-JAVA-springboot

springboot springbootConfiguration注解的底层核心原理Bean注解的底层核心原理 springboot Configuration注解的底层核心原理 https://www.bilibili.com/video/BV1rq4y1E7gK/?spm_id_from333.999.0.0&vd_sourcef21773b7086456ae21a58a6cc59023be spring.io 全家桶 24…

【Emgu CV教程】5.4、几何变换之图像翻转

今天讲解的两个函数,可以实现以下样式的翻转。 水平翻转:将图像沿Y轴(图像最左侧垂直边缘)翻转的操作。原始图像中位于左侧的内容将移动到目标图像的右侧,原始图像中位于右侧的内容将移动到目标图像的左侧。垂直翻转:将图像沿X轴…

智能小程序小部件(Widget)导航、地图、画布等组件,以及开放能力、原生组件说明

智能小程序小部件(Widget)导航、地图、画布等组件,以及开放能力、原生组件说明。 导航组件 navigator 页面链接,控制小程序的跳转。navigator 子节点的背景色应为透明色。 属性说明 属性名类型默认值必填说明urlstring是跳转地址deltanumber1否当 …

用Spark在大数据平台DataBricks轻松处理数据

Apache Spark是一个强大的开源分布式计算系统,专为大规模数据处理而设计。而DataBricks则提供了一个基于云的环境,使得在Spark上处理数据变得更加高效和便捷。本文将介绍如何在DataBricks平台上使用Spark轻松处理大数据。DataBricks是一个基于云的大数据…

8.临床预测模型验证——交叉验证/Bootstrap法

基本概念 交叉验证: 将一定比例的数据挑选出来作为训练集,将其余未选中的样本作为测试集,先在训练集中构建模型,再在测试集中做预测。 内部验证:手动将样本随机分为训练集和测试集,先在训练集中构建模型…

MySQL面试题 | 11.精选MySQL面试题

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

vue2 pdfjs-2.8.335-dist pdf文件在线预览功能

1、首先先将 pdfjs-2.8.335-dist 文件夹从网上搜索下载,复制到public文件夹下. 2、在components下新建组件PdfViewer.vue文件 3、在el-upload 中调用 pdf-viewer 组件 4、在el-upload 中的 on-preview方法中加上对应的src路径 internalPreview(file) { //判断需要…