用javascript分类刷leetcode22.字典树(图文视频讲解)

news2024/11/15 19:56:10

目录

Trie树,即字典树,又称前缀树,是一种树形结构,典型应用是用于统计和排序大量的字符串(但不限于字符串),所以经常被搜索引擎用于文本词频统计。它的优先是,最大限度的减少无谓的字符串比较,提高查找效率。

Trie的核心思想是空间换时间,利用字符串的公共前缀来降低查询时间的开销,以达到提高效率的目的

基本性质

  • 根节点不包含字符,除跟节点外每个节点都只包含一个字符
  • 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串
  • 每个节点的所有子节点包含的字符都不相同
ds_8

实际应用,例如搜索

ds_7#

208. 实现 Trie (前缀树)(medium)

Trie(发音类似 “try”)或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。

请你实现 Trie 类:

Trie() 初始化前缀树对象。
void insert(String word) 向前缀树中插入字符串 word 。
boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false 。
boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false 。

示例:

输入
[“Trie”, “insert”, “search”, “search”, “startsWith”, “insert”, “search”]
[[], [“apple”], [“apple”], [“app”], [“app”], [“app”], [“app”]]
输出
[null, null, true, false, true, null, true]

解释
Trie trie = new Trie();
trie.insert(“apple”);
trie.search(“apple”); // 返回 True
trie.search(“app”); // 返回 False
trie.startsWith(“app”); // 返回 True
trie.insert(“app”);
trie.search(“app”); // 返回 True

提示:

1 <= word.length, prefix.length <= 2000
word 和 prefix 仅由小写英文字母组成
insert、search 和 startsWith 调用次数 总计 不超过 3 * 104 次

ds_8
  • 思路:本题这字符集长度是26,即26个小写英文字母,isEnd表示该节点是否是字符串的结尾。
    1. 插入字符串:从字段树的根节点开始,如果子节点存在,继续处理下一个字符,如果子节点不存在,则创建一个子节点到children的相应位置,沿着指针继续向后移动,处理下一个字符,以插入‘cad’为例
    2. 查找前缀:从根节点开始,子节点存在,则沿着指针继续搜索下一个子节点,直到最后一个,如果搜索到了前缀所有字符,说明字典树包含该前缀。子节点不存在就说明字典树中不包含该前缀,返回false。
    3. 查找字符串:和查找前缀一样,只不过最后返回的节点的isEnd是true,也就是说字符串正好是字典树的一个分支
  • 复杂度分析:时间复杂度,初始化为 O(1),其余操作为 O(S),s为字符串的长度。空间复杂度为O(T),T为字符集的大小,本题是26

js:

var Trie = function() {
    this.children = {};
};

Trie.prototype.insert = function(word) {
    let nodes = this.children;
    for (const ch of word) {//循环word
        if (!nodes[ch]) {//当前字符不在子节点中 则创建一个子节点到children的响应位置
            nodes[ch] = {};
        }
        nodes = nodes[ch];//移动指针到下一个字符子节点
    }
    nodes.isEnd = true;//字符是否结束
};

Trie.prototype.searchPrefix = function(prefix) {
    let nodes = this.children;
    for (const ch of prefix) {//循环前缀
        if (!nodes[ch]) {//当前字符不在子节点中 直接返回false
            return false;
        }
        nodes = nodes[ch];//移动指针到下一个字符子节点
    }
    return nodes;//返回最后的节点
}

Trie.prototype.search = function(word) {
    const nodes = this.searchPrefix(word);
      //判断searchPrefix返回的节点是不是字符串的结尾的字符
    return nodes !== undefined && nodes.isEnd !== undefined;
};

Trie.prototype.startsWith = function(prefix) {
    return this.searchPrefix(prefix);
};

212. 单词搜索 II (hard)

给出一个字符串数组 words 组成的一本英语词典。返回 words 中最长的一个单词,该单词是由 words 词典中其他单词逐步添加一个字母组成。

若其中有多个可行的答案,则返回答案中字典序最小的单词。若无答案,则返回空字符串。

示例 1:

输入:words = [“w”,“wo”,“wor”,“worl”, “world”]
输出:“world”
解释: 单词"world"可由"w", “wo”, “wor”, 和 "worl"逐步添加一个字母组成。
示例 2:

输入:words = [“a”, “banana”, “app”, “appl”, “ap”, “apply”, “apple”]
输出:“apple”
解释:“apply” 和 “apple” 都能由词典中的单词组成。但是 “apple” 的字典序小于 “apply”

提示:

1 <= words.length <= 1000
1 <= words[i].length <= 30
所有输入的字符串 words[i] 都只包含小写字母。

ds_84

  • 思路:将words数组中的所有字符串加入Trie中,然后遍历网格,判断网格路径形成的字符串在不在Trie中,然后上下左右四个方向不断回溯尝试。
  • 复杂度分析:时间复杂度O(MN⋅3^L),空间复杂度是O(max(MN, KL)),visited空间是O(MN),字典树O(KL),L是最长字符串的长度,K是words数组的长度。dfs递归栈的最大深度是O(min(L,MN))
方法1.Trie

Js:

var findWords = function (board, words) {
    const trie = new Trie();
    const dxys = [
        [0, -1],
        [-1, 0],
        [0, 1],
        [1, 0],
    ];
    const xLen = board.length,
        yLen = board[0].length;
    const visited = {};
    const ret = [];

    // 构建Trie
    for (let word of words) {
        trie.insert(word);
    }

    // DFS board
    const dfs = (x, y, nodes, str) => {
        if (nodes[board[x][y]].isEnd) {
            ret.push(str + board[x][y]);
            // 置为false是为了防止重复将字符串加入到ret中
            nodes[board[x][y]].isEnd = false;
        }

        // 处理本层状态
        nodes = nodes[board[x][y]];
        str += board[x][y];

        // 向四联通方向检索
        visited[x * 100 + y] = true;
        for (let [dx, dy] of dxys) {
            const newX = x + dx,
                newY = y + dy;

            if (
                newX < 0 ||
                newY < 0 ||
                newX >= xLen ||
                newY >= yLen ||
                !nodes[board[newX][newY]] ||
                visited[newX * 100 + newY]
            )
                continue;

            dfs(newX, newY, nodes, str);
        }
        visited[x * 100 + y] = false;
    };

    for (let x = 0; x < xLen; x++) {
        for (let y = 0; y < yLen; y++) {
            if (trie.children[board[x][y]]) dfs(x, y, trie.children, "");
        }
    }

    return ret;
};

var Trie = function () {
    this.children = {};
};

Trie.prototype.insert = function (word) {
    let nodes = this.children;
    for (const ch of word) {//循环word
        if (!nodes[ch]) {//当前字符不在子节点中 则创建一个子节点到children的响应位置
            nodes[ch] = {};
        }
        nodes = nodes[ch];//移动指针到下一个字符
    }
    nodes.isEnd = true;//字符是否结束
};

720. 词典中最长的单词 (easy)

给出一个字符串数组 words 组成的一本英语词典。返回 words 中最长的一个单词,该单词是由 words 词典中其他单词逐步添加一个字母组成。

若其中有多个可行的答案,则返回答案中字典序最小的单词。若无答案,则返回空字符串。

示例 1:

输入:words = [“w”,“wo”,“wor”,“worl”, “world”]
输出:“world”
解释: 单词"world"可由"w", “wo”, “wor”, 和 "worl"逐步添加一个字母组成。
示例 2:

输入:words = [“a”, “banana”, “app”, “appl”, “ap”, “apply”, “apple”]
输出:“apple”
解释:“apply” 和 “apple” 都能由词典中的单词组成。但是 “apple” 的字典序小于 “apply”

提示:

1 <= words.length <= 1000
1 <= words[i].length <= 30
所有输入的字符串 words[i] 都只包含小写字母。

方法1:sort+hash
  • 思路:排序数组,然后遍历字符串数组,判断数组中的每个字符串的子串是否都在数组中
  • 复杂度:时间复杂度O(mn),m是字符串数组的长度,n是字符串最大长度。空间复杂度O(m)

js:

var longestWord = function (words) {
    let set = new Set()
    words.forEach(v => set.add(v))//set方便查找
        //先按长度排序,在按字典序
    words.sort((a, b) => a.length === b.length ? a.localeCompare(b) : b.length - a.length)
    for (let i = 0; i < words.length; i++) {
        let flag = true
        for (let j = 1; j < words[i].length; j++) {
            if (!set.has(words[i].substring(0, j))) {//查看set中是否有该字符串的每个子串
                flag = false
                break
            }
        }
        if (flag) {
            return words[i]
        }
    }
    return ''
};
方法2:字典树

ds_160

  • 思路:将所有字符串插入trie中,递归寻找那个长度最大的单词
  • 复杂度:时间复杂度O(mn),m是字符串数组的长度,n是字符串最大长度。空间复杂度O(∑w)。递归深度不会超过最长单词长度,字段书的空间复杂度是所有字符串的长度和。

js:

var longestWord = function (words) {
    const trie = new Trie()
    words.forEach(word => {//将所有字符串插入trie中
        trie.insert(word)
    })
    let res = ''
    const _helper = (nodes, path) => {
        if (path.length > res.length || (res.length === path.length && res > path)) {
            res = path
        }
                //{a:{b1:{c1:{isEnd: true}},b2:{c2:{isEnd: true}}}}
        for (const [key, value] of Object.entries(nodes)) {        
            if (value.isEnd) {//如果当前字符是某一个字符串的结尾
                path += key
                _helper(value, path)//递归寻找
                path = path.slice(0, -1)//回溯
            }
        }
    }
    _helper(trie.children, '')//递归寻找那个长度最大的单词
    return res
}

var Trie = function() {
    this.children = {};
};

Trie.prototype.insert = function(word) {
    let nodes = this.children;
    for (const ch of word) {//循环word
        if (!nodes[ch]) {//当前字符不在子节点中 则创建一个子节点到children的响应位置
            nodes[ch] = {};
        }
        nodes = nodes[ch];//移动指针到下一个字符
    }
    nodes.isEnd = true;//字符是否结束
};

视频讲解:传送门

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/138451.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据挖掘与机器学习作业_06 决策树

决策树 步骤 1.计算不纯度2.选取不纯度最高的特征进行分支3.计算不纯度4.继续划分 from sklearn import tree from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_spl…

单点登录 SSO 解决方案选型指南|身份云研究院

单点登录&#xff08;SSO&#xff09;是目前企业降本增效以及提升用户体验的主流选择方案。常规的单点登录指“登录一次&#xff0c;即可访问所有互相信任的应用&#xff0c;用户不再需要记住每一个应用的账号密码”&#xff0c;这有效解决了密码疲劳、登录效率等问题&#xff…

(深度学习快速入门)第三章第二节:通过一个二分类任务介绍完整的深度学习项目

文章目录一&#xff1a;数据集介绍二&#xff1a;一个完整的深度学习项目必备文件三&#xff1a;项目代码&#xff08;1&#xff09;config.py——超参数文件&#xff08;2&#xff09;preprocess——数据预处理文件&#xff08;3&#xff09;dataloader——数据集封装&#xf…

后端人眼中的Vue(一)

一、简介 1.1、Vue简介 ​ Vue是渐进式 JavaScript 框架&#xff0c;啥叫渐进式&#xff1f;渐进式意味着你可以将Vue作为你应用的一部分嵌入其中&#xff0c;或者如果你希望将更多的业务逻辑使用Vue实现&#xff0c;那么Vue的核心库以及其生态系统。比如CoreVue-routerVuexax…

Homekit智能家居DIY之智能灯泡

一、什么是智能灯 传统的灯泡是通过手动打开和关闭开关来工作。有时&#xff0c;它们可以通过声控、触控、红外等方式进行控制&#xff0c;或者带有调光开关&#xff0c;让用户调暗或调亮灯光。 智能灯泡内置有芯片和通信模块&#xff0c;可与手机、家庭智能助手、或其他智能…

RabbitMQ、Kafka、RocketMQ消息中间件对比总结

文章目录前言侧重点架构模型消息通讯其他对比总结参考文档前言 不论Kafka还是RabbitMQ和RocketMQ&#xff0c;作为消息中间件&#xff0c;其作用为应用解耦、异步通讯、流量削峰填谷等。 拿我之前参加的一个电商项目来说&#xff0c;订单消息通过MQ从订单系统到支付系统、库存…

ORB-SLAM2 --- KeyFrame::UpdateConnections 函数

目录 一、函数作用 二、函数流程 三、code 四、函数解析 一、函数作用 更新关键帧之间的连接图。 更新变量 mConnectedKeyFrameWeights&#xff1a;当前关键帧的共视信息&#xff0c;记录当前关键帧共视关键帧的信息&#xff08;哪一帧和当前关键帧有共视&#xff0c;共视…

用C++实现十大经典排序算法

作者&#xff1a;billy 版权声明&#xff1a;著作权归作者所有&#xff0c;商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处 简介 排序算法可以分为内部排序和外部排序&#xff0c;内部排序是数据记录在内存中进行排序&#xff0c;而外部排序是因排序的数据很大…

喜报|知道创宇连续两年获评北京市企业创新信用领跑企业!

近日&#xff0c;2022年度北京市企业创新信用领跑名单正式发布。知道创宇凭借过硬的技术实力、创新能力及良好的企业信用记录成功入选2022年度北京市企业创新信用领跑企业。值得一提的是&#xff0c;这是知道创宇继2021年以来&#xff0c;连续两年获得此项殊荣。连续两年蝉联双…

CPU是如何执行程序的?

CPU是如何执行程序的&#xff1f;1、硬件结构介绍1.1、CPU1.2、内存1.3、总线1.4、输入/输出设备2、程序执行的基本过程3、a11执行的详细过程现代计算机的基本结构为五个部分&#xff1a;CPU、内存、总线、输入/输出设备。或许你了解了这些概念&#xff0c;但是你知道a11在计算…

【Kubernetes | Pod 系列】Pod 的镜像下载策略和 Pod 的生命周期 Ⅰ—— 理论

目录4. 镜像下载策略5. Pod 的生命周期5.1 Pod 生命期与特性说明5.2 Pod Phase 阶段说明备注5.3 容器状态说明&#xff08;1&#xff09;Waiting &#xff08;等待&#xff09;&#xff08;2&#xff09;Running&#xff08;运行中&#xff09;&#xff08;3&#xff09;Termin…

【回答问题】ChatGPT上线了!给我推荐20个比较流行的nlp预训练模型

目录给我推荐20个比较流行的nlp预训练模型给我推荐20个比较流行的nlp预训练模型源码给我推荐20个比较流行的nlp预训练模型 BERT (谷歌) GPT-2 (OpenAI) RoBERTa (Facebook) ALBERT (谷歌) ELECTRA (谷歌) XLNet (谷歌/纽约大学) T5 (OpenAI) Transformer-XL (谷歌/香港中文大学…

Qt音视频开发09-ffmpeg内核音视频同步

一、前言 用ffmpeg来做音视频同步&#xff0c;个人认为这个是ffmpeg基础处理中最难的一个&#xff0c;无数人就卡在这里&#xff0c;怎么也不准&#xff0c;本人也是尝试过网上各种demo&#xff0c;基本上都是渣渣&#xff0c;要么仅仅支持极其少量的视频文件比如收到的数据包…

【EdgeBox_tx1_tx2_E100】 PyTorch v1.8.0 torchvision v0.9.0 环境部署

简介&#xff1a;介绍PyTorch 环境 在 EHub_tx1_tx2_E100载板&#xff0c;TX1核心模块环境&#xff08;Ubuntu18.04&#xff09;下如何实现部署和测试&#xff0c;准备安装的环境是&#xff08;PyTorch v1.8.0 torchvision v0.9.0&#xff09;。 关于测试硬件EHub_tx1_tx2_E1…

文献学习04_Deep contextualized word representations 深度语境化的单词表示_20230102

论文信息 Subjects: Computation and Language (cs.CL) &#xff08;1&#xff09;题目&#xff1a;Deep contextualized word representations &#xff08;深度语境化的单词表示&#xff09; &#xff08;2&#xff09;文章下载地址&#xff1a; https://doi.org/10.48550/…

Telemetry网络监控技术讲解

目录 Telemetry基本概念 设备监测数据的数据类型 为么要提出Telemetry Telemetry网络模型 广义Telemetry 狭义Telemetry 狭义Telemetry框架 数据源&#xff08;Yang&#xff09; 数据生成&#xff08;GPB&#xff09; 数据订阅&#xff08;gRPC、UDP&#xff09; 数…

跟着开源项目学java7-从操作日志排除敏感字段的提交看基于注解的日志记录实现

这次 commit 主要解决日志信息中可能存在 password 等敏感字段&#xff0c;需要在保存前排除掉 主要涉及两个类的修改&#xff0c;添加实现了一个 PropertyPreExcludeFilter&#xff0c;集成 fastjson2 的 SimplePropertyPreFilter 实现 /*** 排除JSON敏感属性* * author ruo…

两种方法设置Word文档的“只读模式”

防止Word文档被意外更改&#xff0c;我们可以将Word设置成“只读模式”来保护文档。根据需要&#xff0c;还可以将Word可以设置成无密码和有密码的“只读模式”&#xff0c;下面来说说具体方法。 方法一&#xff1a;无密码的“只读模式” 打开Word文档后&#xff0c;点击菜单…

C进阶_C语言_大小端_C语言大小端

现在调试以下代码&#xff0c;并对变量a和b进行监视&#xff1a; #include <stdio.h> int main() {int a 20;int b -10;return 0; } 右键&#xff0c;勾选十六进制显示&#xff1a; 可以看到&#xff0c;变量a和变量b的十六进制值分别为0x00000014和0xfffffff6。 那么…

MySQL之数据库设计范式

数据库设计范式&#xff1a; 第一范式&#xff1a; 要求任何一张表必须有主键&#xff0c;每一个字段原子性不可再分&#xff0c;第一范式是最核心&#xff0c;最重要的范式&#xff0c;所有的表的设计都需要满足 举例&#xff1a; 第二范式&#xff1a; 建立在第一范式的基…