Networkx实现小世界网络的分析

news2024/11/14 19:48:38

Networkx实现小世界网络的分析

小世界网络

小世界现象,也被称为六度分离原则,即如果你在地球上的任何地方随便选择任何两个人,你会发现一条至多由他们之间的6个熟人形成的路径。在网络科学语言中,六度也被称为小世界性质,意味着网络中任何两个节点之间的距离十分小。小世界现象也意味着网络中随机选择的两个节点之间的距离很短。六度分离原理:
在这里插入图片描述

小世界网络模型是对小世界现象的网络模型建模。小世界现象中提出了网络任何两个节点之间的距离很短,那么“短”应该如何来衡量,又应该如何表示这些“短距离”呢?

可以考虑一个平均度为< k >的随机网络,设节点之间距离用 d 表示,那么对于网络中的每个节点,应当有如下性质:

➢ 有< k >个距离自身为 1(即 d=1)的节点

➢ 有< 𝑘 >2个距离自身为 2(即 d=2)的节点

➢ 有< 𝑘 >3个距离自身为 3(即 d=3)的节点

➢ 有< 𝑘 >𝑛个距离自身为 n(即 d=n)的节点

在这里插入图片描述

网络指标分析

网络直径

网络中任意两个节点之间的距离的最大值称为网络的直径,记为 D。实际中网络往往并不是连通的,而是存在一个连通巨片。网络直径通常是指任意两个存在有限距离的节点(也称连通的节点对)之间的距离的最大值。

平均路径长度

网络中任意两个节点距离的平均值,即为网络的平均路径长度,也称网络的平均距离,记为 L。

聚集系数

某个节点的聚集系数刻画了该节点的邻居节点中任意一对节点有连边的概率。即:

在这里插入图片描述

其中,𝐸𝑖为该点的邻居节点之间实际存在的边数,𝑘𝑖为该点的邻居节点个数。网络的聚集系数定义为网络中所有节点的聚集系数的平均值。即:
在这里插入图片描述

度分布

在网络中,度(degree)是指网络中一个点与其他点的连接数量。对于有向图,度有入度(in-degree)和出度(out-degree),入度是指指向该节点的边的数量,出度是指从该节点出发指向其他节点的边的数量。度分布(degree distribution)是指整个网络中,各个点的度数量的概率分布。

代码实现

import networkx as nx
import matplotlib.pyplot as plt

# WS network
NETWORK_SIZE = 100
k = 10
p = 0.1
G = nx.watts_strogatz_graph(NETWORK_SIZE, k, p)
print('网络直径为:', nx.diameter(G))
print('网络平均距离为:', nx.average_shortest_path_length(G))
print('网络群聚系数为:', nx.clustering(G))
print('网络平均群聚系数为:', nx.average_clustering(G))
# print('网络中自环的个数为:', nx.number_of_selfloops(G))
# print('网络中重边的个数为:', G.edges())

# 绘制WS小世界网络图
plt.figure()
ps = nx.circular_layout(G)  # 布置框架
nx.draw(G, ps, with_labels=False, node_size=30)
plt.savefig('wsnetwork.jpg')
plt.show()

# 绘制度分布图
d = dict(nx.degree(G))
print(d)
print("平均度为:", sum(d.values()) / len(G.nodes))

x = list(range(max(d.values()) + 1))
y = [i / sum(nx.degree_histogram(G)) for i in nx.degree_histogram(G)]
print(x)
print(y)
plt.figure()
plt.bar(x, y, width=0.5, color="blue")
plt.xlabel("$k$")
plt.ylabel("$p_k$")
plt.xlim([6, 15])
plt.savefig('degreeDistribution.jpg')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1315932.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++相关闲碎记录(16)

1、正则表达式 &#xff08;1&#xff09;regex的匹配和查找接口 #include <regex> #include <iostream> using namespace std;void out (bool b) {cout << ( b ? "found" : "not found") << endl; }int main() {// find XML/H…

【C++干货铺】继承后的多态 | 抽象类

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 多态的概念 多态的定义和实现 多态的定义条件 虚函数 虚函数的重写 特殊情况 协变&#xff08;基类和派生类的虚函数返回值不同&#xff09; 析构函数的重…

如果你找不到东西,请先确保你在正确的地方寻找

之前我们在几篇文章中描述了如何进行”思想”调试&#xff0c;今天的文章我将不会这样做。 因为下面的编程错误大部分人都会遇到&#xff0c;如果你看一眼下面的代码&#xff0c;你不会发现有什么问题&#xff0c;这仅仅是因为你的的大脑只给你希望看到的&#xff0c;而不是那…

分数约分-第11届蓝桥杯选拔赛Python真题精选

[导读]&#xff1a;超平老师的Scratch蓝桥杯真题解读系列在推出之后&#xff0c;受到了广大老师和家长的好评&#xff0c;非常感谢各位的认可和厚爱。作为回馈&#xff0c;超平老师计划推出《Python蓝桥杯真题解析100讲》&#xff0c;这是解读系列的第20讲。 分数约分&#xf…

算法模板之单链表图文讲解

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;算法模板、数据结构 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. ⛳️使用数组模拟单链表讲解1.1 &#x1f514;为什么我们要使用数组去模拟单链表…

appium2.0.1安装完整教程+uiautomator2安装教程

第一步&#xff1a;根据官网命令安装appium&#xff08;Install Appium - Appium Documentation&#xff09; 注意npm前提是设置淘宝镜像&#xff1a; npm config set registry https://registry.npmmirror.com/ 会魔法的除外。。。 npm i --locationglobal appium或者 npm…

多线程 (上) - 学习笔记

前置知识 什么是线程和进程? 进程: 是程序的一次执行,一个在内存中运行的应用程序。每个进程都有自己独立的一块内存空间&#xff0c;一个进程可以有多个线程&#xff0c;比如在Windows系统中&#xff0c;一个运行的xx.exe就是一个进程。 线程: 进程中的一个执行流&#xff0…

Element-Ui定制Dropdown组件

1.效果 说明&#xff1a;移入后新增图标&#xff0c;然后移入后图标变色。当然大家可以想到用mouseover移入事件来实现移入颜色的变化&#xff0c;但是在使用Dropdown组件的时候&#xff0c;不支持这种写法。因此采用了原生的遍历对象的形式&#xff0c;为每一个item对象绑定鼠…

通过WinCC基本功能实现批次查询及批次报表

谈到WinCC中的批次数据处理和批次报表&#xff0c;也许有人会想到PM-Quality这款专业的批次报表软件。但如果你的银子有限&#xff0c;批次报表要求又比较简单&#xff0c;不妨看看此文。 —《通过 WinCC 基本功能实现批次数据过滤查询以及打印批次数据报表》 实现的功能描述 …

一维数组的定义

什么是数组&#xff1f; &#xff08;1&#xff09;数组是具有一定顺序关系的若干变量的集合&#xff0c;组成数组的各个变量统称为数组的元素 &#xff08;2&#xff09;数组中的各元素的数据类型要求相同&#xff0c;用数组名和下标确定&#xff0c;数组可以是一维的&#…

无经验小白开发一个 JavaWeb项目,需要注意哪些要点?

大家好我是咕噜铁蛋 &#xff0c;我收集了许多来自互联网的宝贵资源&#xff0c;这些资源帮助我学习和理解如何从零开始开发JavaWeb项目。今天&#xff0c;我将与大家分享一些关键的要点&#xff0c;包括项目规划、技术选型、数据库设计、代码编写和测试部署等。如果你有任何问…

大数据存储技术(3)—— HBase分布式数据库

目录 一、HBase简介 &#xff08;一&#xff09;概念 &#xff08;二&#xff09;特点 &#xff08;三&#xff09;HBase架构 二、HBase原理 &#xff08;一&#xff09;读流程 &#xff08;二&#xff09;写流程 &#xff08;三&#xff09;数据 flush 过程 &#xf…

Mysql数据库 19.Mysql 锁

MySQL锁 锁&#xff1a;锁是计算机用以协调多个进程间并发访问同一共享资源的一种机制&#xff0c;在数据库中&#xff0c;除传统的计算资源&#xff08;CPU、RAM、I/O&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共享的资源&#xff0c;如何保证数据并发访问的一…

【MySQL备份】MySQL备份工具-MyDumper

目录 什么是MyDumper MyDumper优势有哪些 如何安装MyDumper 参数解释 1 mydumper参数解释 备份流程 一致性快照如何工作&#xff1f; 如何排除&#xff08;或包含&#xff09;数据库&#xff1f; 输出文件 Metadata文件 ​编辑 表数据 文件 表结构 文件 建库文件…

关于uview-ui的u-tabs标签滑块不居中的问题

在uniapp中&#xff0c;打开文件 uni_modules/uview-ui/components/u-tabs/u-tabs.vue 然后在style中添加以下代码即可 /deep/ .u-tabs__wrapper__nav__line {left: 18rpx; } 之前效果图&#xff1a; 之后效果图&#xff1a; 注意&#xff0c;代码中的18rpx需要自行调整

半导体:Gem/Secs基本协议库的开发(5)

此篇是1-4 《半导体》的会和处啦&#xff0c;我们有了协议库&#xff0c;也有了通讯库&#xff0c;这不得快乐的玩一把~ 一、先创建一个从站&#xff0c;也就是我们的Equipment端 QT - guiCONFIG c11 console CONFIG - app_bundle CONFIG no_debug_release # 不会生…

深入理解JVM设计的精髓与独特之处

这是Java代码的执行过程 从软件工程的视角去深入拆解&#xff0c;无疑极具吸引力&#xff1a;首个阶段仅依赖于源高级语言的细微之处&#xff0c;而第二阶段则仅仅专注于目标机器语言的特质。 不可否认&#xff0c;在这两个编译阶段之间的衔接&#xff08;具体指明中间处理步…

C语言----文件操作(二)

在上一篇文章中我们简单介绍了在C语言中文件是什么以及文件的打开和关闭操作&#xff0c;在实际工作中&#xff0c;我们不仅仅是要打开和关闭文件&#xff0c;二是需要对文件进行增删改写。本文将详细介绍如果对文件进行安全读写。 一&#xff0c;以字符形式读写文件&#xff…

一文搞懂OSI参考模型与TCP/IP

OSI参考模型与TCP/IP 1. OSI参考模型1.1 概念1.2 数据传输过程 2. TCP/IP2.1 概念2.2 数据传输过程 3. 对应关系4. 例子4.1 发送数据包4.2 传输数据包4.3 接收数据包 1. OSI参考模型 1.1 概念 OSI模型&#xff08;Open System Interconnection Reference Model&#xff09;&a…

MLX:苹果 专为统一内存架构(UMA) 设计的机器学习框架

“晨兴理荒秽&#xff0c;带月荷锄归” 夜深闻讯&#xff0c;有点兴奋&#xff5e; 苹果为 UMA 设计的深度学习框架真的来了 统一内存架构 得益于 CPU 与 GPU 内存的共享&#xff0c;同时与 MacOS 和 M 芯片 交相辉映&#xff0c;在效率上&#xff0c;实现对其他框架的降维打…