智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/1/23 3:21:42

智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于象群算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.象群算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用象群算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.象群算法

象群算法原理请参考:https://blog.csdn.net/u011835903/article/details/109135426
象群算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


象群算法参数如下:

%% 设定象群优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明象群算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1308918.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【SpringBoot】FreeMarker视图渲染

目录 一、FreeMarker 简介 1.1 什么是FreeMarker? 1.2 Freemarker模板组成部分 1.3 为什么要使用FreeMarker 二、Springboot集成FreeMarker 2.1 配置 2.2 数据类型 2.2.1 字符串 2.2.2 数值 2.2.3 布尔值 2.2.4 日期 2.3 常见指令 2.3.2 assign 2.3…

国产仿日立高速离心瓶250ml/500ml/1000ml日立通用离心杯

国产仿日立高速离心瓶250ml/500ml/1000ml日立离心机通用离心杯 250ml高速离心瓶 货号:ZY1136229 材质:PPCO 外径:61 mm 高度:130mm 500ml高速离心瓶 货号:ZY1136219 材质:PPCO 外径:73m…

大模型应用_FastGPT

1 功能 整体功能,想解决什么问题 官方说明:FastGPT 是一个基于 LLM 大语言模型的知识库问答系统,提供开箱即用的数据处理、模型调用等能力。同时可以通过 Flow 可视化进行工作流编排,从而实现复杂的问答场景!个人体会…

【map】【动态规划】LeetCode2713:矩阵中严格递增的单元格数

本文涉及的基础知识点 二分查找算法合集 题目 给你一个下标从 1 开始、大小为 m x n 的整数矩阵 mat,你可以选择任一单元格作为 起始单元格 。 从起始单元格出发,你可以移动到 同一行或同一列 中的任何其他单元格,但前提是目标单元格的值 …

UML-认识6种箭头(画类图无烦恼)

文章目录 一、背景二、箭头详解2.1 泛化(Generalization)2.2 实现(Realize)2.3 依赖(Dependency)2.4 关联(Association)2.5 聚合(Aggregation)2.6 组合&#…

npm安装,idea中启动vue失败

node 设置配置之后,要查询时,会从.npmrc中读取路径 .npmrc自己创建的(默认情况下.npmrc会创建在C盘中) 我创建的在D:\studay-and-working\node16.14\node_modules\npm中 指定.npmrc文件,因为默认会访问C盘的.npmrc文件…

现代雷达车载应用——第2章 汽车雷达系统原理 2.4节 雷达波形和信号处理

经典著作,值得一读,英文原版下载链接【免费】ModernRadarforAutomotiveApplications资源-CSDN文库。 2.4 雷达波形和信号处理 对于连续波雷达来说,波形决定了其基本信号处理流程以及一些关键功能。本节将以FMCW波形为例,讨论信号…

# 和 $ 的区别①

# 和 $ 都是为了获取变量的值 # 和 $ 区别 : 使用 # 查询 id 为 1 的内容 如果看不懂代码,就去看<<Mybatis 的操作(结合上文)续集>>,我这里为了简练一点就不多解释了 Select("select * from userInfo where id #{id}")UserInfo selectOne(Integer id…

2023版本QT学习记录 -1- 手写登录注册界面(信号与槽)

登录界面图片 登录界面设计 分别创建如下图的&#xff0c;一个文本框&#xff0c;两个输入框&#xff0c;两个按键 注册界面图片 注册界面设计 分别创建如下图的&#xff0c;一个文本框&#xff0c;两个输入框&#xff0c;两个按键 设计子框&#xff08;也就是注册页面&…

机器视觉系统选型-线光源分类及应用场景

标准线光源 从线性LED的发光面照射漫射光 玻璃划痕检测印刷字符检测手机屏幕检测PCB板检测 高亮线光源 从线性LED的发光面照射高亮度漫射光高速流水线检测表面印刷检测表面缺陷检测 集光型线光源 从线性LED的发光面照射直射光划痕缺陷检测印刷字符检测布料检测 同轴线光源 与相…

做数据分析为何要学统计学(2)——如何估计总体概率分布

我们可以通过手头掌握的样本来估计总体的概率分布。这个过程由以下步骤组成。 第一步&#xff0c;我们采用Seaborn软件的histplot函数建立核密度图&#xff08;一种概率密度图&#xff09;。 import numpy as np #输入样本数据 xnp.array([2.12906357, 0.72736725, 1.0515282…

Simple Water Caustic Pattern In Unity ShaderGpaph

shadertoy上有各种神奇的效果&#xff0c;以我的见识根本想象不到这些是怎么弄出来的。 不过不会做至少可以先会用。 这篇文章抓取一个shadertoy的示例以制作一个测试效果。 参考这篇shadertoy&#xff0c;使用自定义节点装填hlsl的noise代码 Shader - Shadertoy BETA 首先使…

使用FluentAvalonia组件库快速完成Avalonia前端开发

前言 工欲善其事必先利其器,前面我们花了几篇文章介绍了Avalonia框架以及如何在Avalonia框架下面使用PrismAvalonia完成MVV模式的开发。今天我们将介绍一款重磅级的Avalonia前端组件库,里面封装了我们开发中常用的组件,这样就不用我们自己再写组件了。专注业务功能开发,提…

tesseract-ocr安装使用

描述&#xff1a; 在centos上安装 tesseract 并在springboot项目中使用 步骤一&#xff1a;安装 确认使用的版本tesseract和test4j版本需要匹配&#xff0c;这里选择最新版 tesseract5.3.3 &#xff0c;test4j 5.9.0 版本匹配可查看 Releases nguyenq/tess4j GitHub 或…

「Leetcode」滑动窗口—长度最小的子数组

&#x1f4bb;文章目录 &#x1f4c4;题目✏️题目解析 & 思路&#x1f4d3;总结 &#x1f4c4;题目 209. 长度最小的子数组 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, …,…

deepstream-python安装

​ 安装deepstream-docker 在这边文章中deepstream-docker详细介绍了如何在Ubuntu下安装deepstream-docker&#xff0c;安装完成之后&#xff0c;为了快速入门deepstream&#xff0c;我们可以安装deepstream-python库&#xff0c;通过阅读相应的例子来快速搭建一个应用。 安…

【Hive】

一、Hive是什么 Hive是一款建立在Hadoop之上的开源数据仓库系统&#xff0c;将Hadoop文件中的结构化、半结构化数据文件映射成一张数据库表&#xff0c;同时提供了一种类SQL语言&#xff08;HQL&#xff09;&#xff0c;用于访问和分析存在Hadoop中的大型数据集。Hive的核心是将…

第一届古剑山ctf-pwn全部题解

1. choice 附件&#xff1a; https://github.com/chounana/ctf/blob/main/2023%E7%AC%AC%E4%B8%80%E5%B1%8A%E5%8F%A4%E5%89%91%E5%B1%B1pwn/choice.zip 漏洞代码&#xff1a; 漏洞成因&#xff1a; byte_804A04C输入的长度可以覆盖nbytes的值&#xff0c;导致后面输入时存…

数据管理与持久化:深度解析Docker数据卷

Docker 数据卷在容器化应用中扮演着关键角色&#xff0c;它们提供了一种灵活且可持久化的方式来处理应用数据。本文将深入讨论 Docker 数据卷的基本概念、使用方法以及一系列高级应用场景&#xff0c;通过更为丰富和实际的示例代码&#xff0c;帮助大家全面掌握数据卷的使用和管…

Impala4.x源码阅读笔记(二)——Impala如何高效读取Iceberg表

前言 本文为笔者个人阅读Apache Impala源码时的笔记&#xff0c;仅代表我个人对代码的理解&#xff0c;个人水平有限&#xff0c;文章可能存在理解错误、遗漏或者过时之处。如果有任何错误或者有更好的见解&#xff0c;欢迎指正。 Iceberg表是一种用于存储大规模结构化数据的…