python数据分析(1)numpy基础

news2025/1/15 12:53:35

iamseancheney/python_for_data_analysis_2nd_chinese_version: 《利用Python进行数据分析·第2版》 (github.com)

NumPy的ndarray:一种多维数组对象

1.性质

NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。

例如:

In [1]: import numpy as np

In [2]: data=np.random.randn(2,3)

In [3]: data
Out[3]: 
array([[ 0.96509358,  0.5278069 ,  0.39728915],
       [-0.07023707, -0.09888869,  0.46974212]])

In [4]:

可以按照如下方式对整块数据进行运算

In [4]: data*10
Out[4]: 
array([[ 9.65093583,  5.27806898,  3.97289147],
       [-0.7023707 , -0.98888688,  4.69742122]])

In [5]: data+data
Out[5]: 
array([[ 1.93018717,  1.0556138 ,  0.79457829],
       [-0.14047414, -0.19777738,  0.93948424]])

ndarray是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。每个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对象):

In [17]: data.shape
Out[17]: (2, 3)

In [18]: data.dtype
Out[18]: dtype('float64')

 创建ndarray

创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的NumPy数组。以一个列表的转换为例:

In [19]: data1 = [6, 7.5, 8, 0, 1]

In [20]: arr1 = np.array(data1)

In [21]: arr1
Out[21]: array([ 6. ,  7.5,  8. ,  0. ,  1. ])

嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组

In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]

In [23]: arr2 = np.array(data2)

In [24]: arr2
Out[24]: 
array([[1, 2, 3, 4],
       [5, 6, 7, 8]])

 可以用属性ndim和shape验证:

In [25]: arr2.ndim
Out[25]: 2

In [26]: arr2.shape
Out[26]: (2, 4)

除非特别说明(稍后将会详细介绍),np.array会尝试为新建的这个数组推断出一个较为合适的数据类型。数据类型保存在一个特殊的dtype对象中。比如说,在上面的两个例子中,我们有:

In [27]: arr1.dtype
Out[27]: dtype('float64')

In [28]: arr2.dtype
Out[28]: dtype('int64')

 zeros ones empty

zeros和ones分别可以创建指定长度或形状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元组即可:

In [29]: np.zeros(10)
Out[29]: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

In [30]: np.zeros((3, 6))
Out[30]: 
array([[ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.,  0.,  0.]])

In [31]: np.empty((2, 3, 2))
Out[31]: 
array([[[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]],
       [[ 0.,  0.],
        [ 0.,  0.],
        [ 0.,  0.]]])

arange是Python内置函数range的数组版:

In [32]: np.arange(15)
Out[32]: array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14])

表4-1列出了一些数组创建函数。由于NumPy关注的是数值计算,因此,如果没有特别指定,数据类型基本都是float64(浮点数)。

ndarray的数据类型

dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息: 

数值型dtype的命名方式相同:一个类型名(如float或int),后面跟一个用于表示各元素位长的数字。标准的双精度浮点值(即Python中的float对象)需要占用8字节(即64位)。因此,该类型在NumPy中就记作float64。        

你可以通过ndarray的astype方法明确地将一个数组从一个dtype转换成另一个dtype:

In [37]: arr = np.array([1, 2, 3, 4, 5])

In [38]: arr.dtype
Out[38]: dtype('int64')

In [39]: float_arr = arr.astype(np.float64)

In [40]: float_arr.dtype
Out[40]: dtype('float64')

在本例中,整数被转换成了浮点数。如果将浮点数转换成整数,则小数部分将会被截取删除:

In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])

In [42]: arr
Out[42]: array([  3.7,  -1.2,  -2.6,   0.5,  12.9,  10.1])

In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2,  0, 12, 10], dtype=int32)

如果某字符串数组表示的全是数字,也可以用astype将其转换为数值形式:

In [44]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)

In [45]: numeric_strings.astype(float)
Out[45]: array([  1.25,  -9.6 ,  42.  ])

注意:使用numpy.string_类型时,一定要小心,因为NumPy的字符串数据是大小固定的,发生截取时,不会发出警告。pandas提供了更多非数值数据的便利的处理方法。 

 如果转换过程因为某种原因而失败了(比如某个不能被转换为float64的字符串),就会引发一个ValueError。这里,我比较懒,写的是float而不是np.float64;NumPy很聪明,它会将Python类型映射到等价的dtype上。

数组的dtype还有另一个属性:

In [46]: int_array = np.arange(10)

In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)

In [48]: int_array.astype(calibers.dtype)
Out[48]: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])

你还可以用简洁的类型代码来表示dtype:

In [49]: empty_uint32 = np.empty(8, dtype='u4')

In [50]: empty_uint32
Out[50]: 
array([         0, 1075314688,          0, 1075707904,          0,
       1075838976,          0, 1072693248], dtype=uint32)

笔记:调用astype总会创建一个新的数组(一个数据的备份),即使新的dtype与旧的dtype相同。

NumPy数组的运算 

数组很重要,因为它使你不用编写循环即可对数据执行批量运算。NumPy用户称其为矢量化(vectorization)。大小相等的数组之间的任何算术运算都会将运算应用到元素级:

In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])

In [52]: arr
Out[52]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [53]: arr * arr
Out[53]: 
array([[  1.,   4.,   9.],
       [ 16.,  25.,  36.]])

In [54]: arr - arr
Out[54]: 
array([[ 0.,  0.,  0.],
       [ 0.,  0.,  0.]])

数组与标量的算术运算会将标量值传播到各个元素: 

In [55]: 1 / arr
Out[55]: 
array([[ 1.    ,  0.5   ,  0.3333],
       [ 0.25  ,  0.2   ,  0.1667]])

In [56]: arr ** 0.5
Out[56]: 
array([[ 1.    ,  1.4142,  1.7321],
       [ 2.    ,  2.2361,  2.4495]])

大小相同的数组之间的比较会生成布尔值数组:

In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])

In [58]: arr2
Out[58]: 
array([[  0.,   4.,   1.],
       [  7.,   2.,  12.]])

In [59]: arr2 > arr
Out[59]:
array([[False,  True, False],
       [ True, False,  True]], dtype=bool)

基本的索引和切片 

In [60]: arr = np.arange(10)

In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [62]: arr[5]
Out[62]: 5

In [63]: arr[5:8]
Out[63]: array([5, 6, 7])

In [64]: arr[5:8] = 12

In [65]: arr
Out[65]: array([ 0,  1,  2,  3,  4, 12, 12, 12,  8,  9])

 如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8]=12),该值会自动传播(也就说后面将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组

即对切片做的所有操作都会反映到原array中

In [66]: arr_slice = arr[5:8]

In [67]: arr_slice
Out[67]: array([12, 12, 12])

In [68]: arr_slice[1] = 12345

In [69]: arr
Out[69]: array([    0,     1,     2,     3,     4,    12, 12345,    12,     8,   
  9])

切片[ : ]会给数组中的所有值赋值:

In [70]: arr_slice[:] = 64

In [71]: arr
Out[71]: array([ 0,  1,  2,  3,  4, 64, 64, 64,  8,  9])

 注意:如果你想要得到的是ndarray切片的一份副本而非视图,就需要明确地进行复制操作,例如arr[5:8].copy()

在一个二维数组中,各索引位置上的元素不再是标量而是一维数组:  

对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组: 

In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

In [73]: arr2d[2]
Out[73]: array([7, 8, 9])

 逗号隔开的索引列表来选取单个元素

因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的: 

In [74]: arr2d[0][2]
Out[74]: 3

In [75]: arr2d[0, 2]
Out[75]: 3

 在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。因此,在2×2×3数组arr3d中:

In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])

In [77]: arr3d
Out[77]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

arr3d[0]是一个2×3数组:

In [78]: arr3d[0]
Out[78]: 
array([[1, 2, 3],
       [4, 5, 6]])

标量值和数组都可以被赋值给arr3d[0]:

In [79]: old_values = arr3d[0].copy()

In [80]: arr3d[0] = 42

In [81]: arr3d
Out[81]: 
array([[[42, 42, 42],
        [42, 42, 42]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

In [82]: arr3d[0] = old_values

In [83]: arr3d
Out[83]: 
array([[[ 1,  2,  3],
        [ 4,  5,  6]],
       [[ 7,  8,  9],
        [10, 11, 12]]])

相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回):

In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])

虽然是用两步进行索引的,表达式是相同的:

In [85]: x = arr3d[1]

In [86]: x
Out[86]: 
array([[ 7,  8,  9],
       [10, 11, 12]])

In [87]: x[0]
Out[87]: array([7, 8, 9])

 注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。.

切片索引

ndarray的切片语法跟Python列表这样的一维对象差不多:

对于之前的二维数组arr2d,其切片方式稍显不同:

In [90]: arr2d
Out[90]: 
array([[1, 2, 3],
       [4, 5, 6],
       [7, 8, 9]])

In [91]: arr2d[:2]
Out[91]: 
array([[1, 2, 3],
       [4, 5, 6]])

可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。

你可以一次传入多个切片,就像传入多个索引那样:

In [92]: arr2d[:2, 1:]
Out[92]: 
array([[2, 3],
       [5, 6]])

 整数索引和切片混合

像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。

例如,我可以选取第二行的前两列:

In [93]: arr2d[1, :2]
Out[93]: array([4, 5])

相似的,还可以选择第三列的前两行:

In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])

图4-2对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进行切片:

In [95]: arr2d[:, :1]
Out[95]: 
array([[1],
       [4],
       [7]])

 布尔型索引

来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:

In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [99]: data = np.random.randn(7, 4)

In [100]: names
Out[100]: 
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
      dtype='<U4')

In [101]: data
Out[101]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

 假设每个名字都对应data数组中的一行,而我们想要选出对应于名字"Bob"的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串"Bob"的比较运算将会产生一个布尔型数组:

In [102]: names == 'Bob'
Out[102]: array([ True, False, False,  True, False, False, False], dtype=bool)

这个布尔型数组可用于数组索引: 

In [103]: data[names == 'Bob']
Out[103]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.669 , -0.4386, -0.5397,  0.477 ]])

布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数(或整数序列,稍后将对此进行详细讲解)混合使用

注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。

 下面的例子,我选取了names == 'Bob'的行,并索引了列:

In [104]: data[names == 'Bob', 2:]
Out[104]: 
array([[ 0.769 ,  1.2464],
       [-0.5397,  0.477 ]])

In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464,  0.477 ])

要选择除"Bob"以外的其他值,既可以使用不等于符号(!=),也可以通过~对条件进行否定:

In [106]: names != 'Bob'
Out[106]: array([False,  True,  True, False,  True,  True,  True], dtype=bool)

In [107]: data[~(names == 'Bob')]
Out[107]:
array([[ 1.0072, -1.2962,  0.275 ,  0.2289],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 3.2489, -1.0212, -0.5771,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [-0.7135, -0.8312, -2.3702, -1.8608]])

~操作符用来反转条件很好用:

选取这三个名字中的两个需要组合应用多个布尔条件,使用&(和)、|(或)之类的布尔算术运算符即可:

In [110]: mask = (names == 'Bob') | (names == 'Will')

In [111]: mask
Out[111]: array([ True, False,  True,  True,  True, False, False], dtype=bool)

In [112]: data[mask]
Out[112]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.3529,  0.8864, -2.0016, -0.3718],
       [ 1.669 , -0.4386, -0.5397,  0.477 ],
       [ 3.2489, -1.0212, -0.5771,  0.1241]])

 通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。注意:Python关键字and和or在布尔型数组中无效。要使用&与|。

 通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:

In [113]: data[data < 0] = 0

In [114]: data
Out[114]: 
array([[ 0.0929,  0.2817,  0.769 ,  1.2464],
       [ 1.0072,  0.    ,  0.275 ,  0.2289],
       [ 1.3529,  0.8864,  0.    ,  0.    ],
       [ 1.669 ,  0.    ,  0.    ,  0.477 ],
       [ 3.2489,  0.    ,  0.    ,  0.1241],
       [ 0.3026,  0.5238,  0.0009,  1.3438],
       [ 0.    ,  0.    ,  0.    ,  0.    ]])

花式索引

花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。假设我们有一个8×4数组:

In [117]: arr = np.empty((8, 4))

In [118]: for i in range(8):
   .....:     arr[i] = i

In [119]: arr
Out[119]: 
array([[ 0.,  0.,  0.,  0.],
       [ 1.,  1.,  1.,  1.],
       [ 2.,  2.,  2.,  2.],
       [ 3.,  3.,  3.,  3.],
       [ 4.,  4.,  4.,  4.],
       [ 5.,  5.,  5.,  5.],
       [ 6.,  6.,  6.,  6.],
       [ 7.,  7.,  7.,  7.]])

为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可:

In [120]: arr[[4, 3, 0, 6]]
Out[120]: 
array([[ 4.,  4.,  4.,  4.],
       [ 3.,  3.,  3.,  3.],
       [ 0.,  0.,  0.,  0.],
       [ 6.,  6.,  6.,  6.]])

这段代码确实达到我们的要求了!使用负数索引将会从末尾开始选取行:

In [121]: arr[[-3, -5, -7]]
Out[121]: 
array([[ 5.,  5.,  5.,  5.],
       [ 3.,  3.,  3.,  3.],
       [ 1.,  1.,  1.,  1.]])

一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:

In [122]: arr = np.arange(32).reshape((8, 4))

In [123]: arr
Out[123]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19],
       [20, 21, 22, 23],
       [24, 25, 26, 27],
       [28, 29, 30, 31]])

In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])

这个花式索引的行为可能会跟某些用户的预期不一样(包括我在内),选取矩阵的行列子集应该是矩形区域的形式才对。下面是得到该结果的一个办法:

In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]: 
array([[ 4,  7,  5,  6],
       [20, 23, 21, 22],
       [28, 31, 29, 30],
       [ 8, 11,  9, 10]])

 记住,花式索引跟切片不一样,它总是将数据复制到新数组中。

 数组转置和轴对换

 转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有transpose方法,还有一个特殊的T属性:

In [126]: arr = np.arange(15).reshape((3, 5))

In [127]: arr
Out[127]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

In [128]: arr.T
Out[128]: 
array([[ 0,  5, 10],
       [ 1,  6, 11],
       [ 2,  7, 12],
       [ 3,  8, 13],
       [ 4,  9, 14]])

在进行矩阵计算时,经常需要用到该操作,比如利用np.dot计算矩阵内积: 

In [129]: arr = np.random.randn(6, 3)

In [130]: arr
Out[130]: 
array([[-0.8608,  0.5601, -1.2659],
       [ 0.1198, -1.0635,  0.3329],
       [-2.3594, -0.1995, -1.542 ],
       [-0.9707, -1.307 ,  0.2863],
       [ 0.378 , -0.7539,  0.3313],
       [ 1.3497,  0.0699,  0.2467]])

In [131]: np.dot(arr.T, arr)
Out[131]:
array([[ 9.2291,  0.9394,  4.948 ],
       [ 0.9394,  3.7662, -1.3622],
       [ 4.948 , -1.3622,  4.3437]])

对于高维数组,transpose需要得到一个由轴编号组成的元组才能对这些轴进行转置(比较费脑子):

In [132]: arr = np.arange(16).reshape((2, 2, 4))

In [133]: arr
Out[133]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [134]: arr.transpose((1, 0, 2))
Out[134]: 
array([[[ 0,  1,  2,  3],
        [ 8,  9, 10, 11]],
       [[ 4,  5,  6,  7],
        [12, 13, 14, 15]]])

这里,第一个轴被换成了第二个,第二个轴被换成了第一个,最后一个轴不变。 

 简单的转置可以使用.T,它其实就是进行轴对换而已。ndarray还有一个swapaxes方法,它需要接受一对轴编号:

In [135]: arr
Out[135]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7]],
       [[ 8,  9, 10, 11],
        [12, 13, 14, 15]]])

In [136]: arr.swapaxes(1, 2)
Out[136]: 
array([[[ 0,  4],
        [ 1,  5],
        [ 2,  6],
        [ 3,  7]],
       [[ 8, 12],
        [ 9, 13],
        [10, 14],
        [11, 15]]])

 即交换哪

 4.2 通用函数:快速的元素级数组函数

通用函数(即ufunc)是一种对ndarray中的数据执行元素级运算的函数。你可以将其看做简单函数(接受一个或多个标量值,并产生一个或多个标量值)的矢量化包装器

许多ufunc都是简单的元素级变体,如sqrt和exp:

In [137]: arr = np.arange(10)

In [138]: arr
Out[138]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

In [139]: np.sqrt(arr)
Out[139]: 
array([ 0.    ,  1.    ,  1.4142,  1.7321,  2.    ,  2.2361,  2.4495,
        2.6458,  2.8284,  3.    ])

In [140]: np.exp(arr)
Out[140]: 
array([    1.    ,     2.7183,     7.3891,    20.0855,    54.5982,
         148.4132,   403.4288,  1096.6332,  2980.958 ,  8103.0839])

这些都是一元(unary)ufunc。另外一些(如add或maximum)接受2个数组(因此也叫二元(binary)ufunc),并返回一个结果数组:

In [141]: x = np.random.randn(8)

In [142]: y = np.random.randn(8)

In [143]: x
Out[143]: 
array([-0.0119,  1.0048,  1.3272, -0.9193, -1.5491,  0.0222,  0.7584,
       -0.6605])

In [144]: y
Out[144]: 
array([ 0.8626, -0.01  ,  0.05  ,  0.6702,  0.853 , -0.9559, -0.0235,
       -2.3042])

In [145]: np.maximum(x, y)
Out[145]: 
array([ 0.8626,  1.0048,  1.3272,  0.6702,  0.853 ,  0.0222,  0.7584,   
       -0.6605])

这里,numpy.maximum计算了x和y中元素级别最大的元素。

虽然并不常见,但有些ufunc的确可以返回多个数组。modf就是一个例子,它是Python内置函数divmod的矢量化版本,它会返回浮点数数组的小数和整数部分:

In [146]: arr = np.random.randn(7) * 5

In [147]: arr
Out[147]: array([-3.2623, -6.0915, -6.663 ,  5.3731,  3.6182,  3.45  ,  5.0077])

In [148]: remainder, whole_part = np.modf(arr)

In [149]: remainder
Out[149]: array([-0.2623, -0.0915, -0.663 ,  0.3731,
0.6182,  0.45  ,  0.0077])

In [150]: whole_part
Out[150]: array([-3., -6., -6.,  5.,  3.,  3.,  5.])

Ufuncs可以接受一个out可选参数,这样就能在数组原地进行操作:

In [151]: arr
Out[151]: array([-3.2623, -6.0915, -6.663 ,  5.3731,  3.6182,  3.45  ,  5.0077])

In [152]: np.sqrt(arr)
Out[152]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  2.2378])

In [153]: np.sqrt(arr, arr)
Out[153]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  2.2378])

In [154]: arr
Out[154]: array([    nan,     nan,     nan,  2.318 ,  1.9022,  1.8574,  2.2378])

4.3 利用数组进行数据处理 

NumPy数组使你可以将许多种数据处理任务表述为简洁的数组表达式(否则需要编写循环)。用数组表达式代替循环的做法,通常被称为矢量化。一般来说,矢量化数组运算要比等价的纯Python方式快上一两个数量级(甚至更多),尤其是各种数值计算。在后面内容中(见附录A)我将介绍广播,这是一种针对矢量化计算的强大手段。

作为简单的例子,假设我们想要在一组值(网格型)上计算函数sqrt(x^2+y^2)。np.meshgrid函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的(x,y)对):

In [155]: points = np.arange(-5, 5, 0.01) # 1000 equally spaced points

In [156]: xs, ys = np.meshgrid(points, points)
In [157]: ys
Out[157]: 
array([[-5.  , -5.  , -5.  , ..., -5.  , -5.  , -5.  ],
       [-4.99, -4.99, -4.99, ..., -4.99, -4.99, -4.99],
       [-4.98, -4.98, -4.98, ..., -4.98, -4.98, -4.98],
       ..., 
       [ 4.97,  4.97,  4.97, ...,  4.97,  4.97,  4.97],
       [ 4.98,  4.98,  4.98, ...,  4.98,  4.98,  4.98],
       [ 4.99,  4.99,  4.99, ...,  4.99,  4.99,  4.99]])

现在,对该函数的求值运算就好办了,把这两个数组当做两个浮点数那样编写表达式即可:

In [158]: z = np.sqrt(xs ** 2 + ys ** 2)

In [159]: z
Out[159]: 
array([[ 7.0711,  7.064 ,  7.0569, ...,  7.0499,  7.0569,  7.064 ],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428, 7.0499],
       ..., 
       [ 7.0499,  7.0428,  7.0357, ...,  7.0286,  7.0357,  7.0428],
       [ 7.0569,  7.0499,  7.0428, ...,  7.0357,  7.0428,  7.0499],
       [ 7.064 ,  7.0569,  7.0499, ...,  7.0428,  7.0499,  7.0569]])

作为第9章的先导,我用matplotlib创建了这个二维数组的可视化:

In [160]: import matplotlib.pyplot as plt

In [161]: plt.imshow(z, cmap=plt.cm.gray); plt.colorbar()
Out[161]: <matplotlib.colorbar.Colorbar at 0x7f715e3fa630>

In [162]: plt.title("Image plot of $\sqrt{x^2 + y^2}$ for a grid of values")
Out[162]: <matplotlib.text.Text at 0x7f715d2de748>

 将条件逻辑表述为数组运算

numpy.where函数是三元表达式x if condition else y的矢量化版本。假设我们有一个布尔数组和两个值数组:

In [165]: xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])

In [166]: yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])

In [167]: cond = np.array([True, False, True, True, False])

假设我们想要根据cond中的值选取xarr和yarr的值:当cond中的值为True时,选取xarr的值,否则从yarr中选取。列表推导式的写法应该如下所示:

In [168]: result = [(x if c else y)
   .....:           for x, y, c in zip(xarr, yarr, cond)]

In [169]: result
Out[169]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 2.5]

这有几个问题。第一,它对大数组的处理速度不是很快(因为所有工作都是由纯Python完成的)。第二,无法用于多维数组。若使用np.where,则可以将该功能写得非常简洁: 

In [170]: result = np.where(cond, xarr, yarr)

In [171]: result
Out[171]: array([ 1.1,  2.2,  1.3,  1.4,  2.5])

np.where的第二个和第三个参数不必是数组,它们都可以是标量值。在数据分析工作中,where通常用于根据另一个数组而产生一个新的数组。假设有一个由随机数据组成的矩阵,你希望将所有正值替换为2,将所有负值替换为-2。若利用np.where,则会非常简单: 

In [172]: arr = np.random.randn(4, 4)

In [173]: arr
Out[173]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 0.2229,  0.0513, -1.1577,  0.8167],
       [ 0.4336,  1.0107,  1.8249, -0.9975],
       [ 0.8506, -0.1316,  0.9124,  0.1882]])

In [174]: arr > 0
Out[174]: 
array([[False, False, False, False],
       [ True,  True, False,  True],
       [ True,  True,  True, False],
       [ True, False,  True,  True]], dtype=bool)

In [175]: np.where(arr > 0, 2, -2)
Out[175]: 
array([[-2, -2, -2, -2],
       [ 2,  2, -2,  2],
       [ 2,  2,  2, -2],
       [ 2, -2,  2,  2]])

使用np.where,可以将标量和数组结合起来。例如,我可用常数2替换arr中所有正的值:

In [176]: np.where(arr > 0, 2, arr) # set only positive values to 2
Out[176]: 
array([[-0.5031, -0.6223, -0.9212, -0.7262],
       [ 2.    ,  2.    , -1.1577,  2.    ],
       [ 2.    ,  2.    ,  2.    , -0.9975],
       [ 2.    , -0.1316,  2.    ,  2.    ]])

传递给where的数组大小可以不相等,甚至可以是标量值。 

 数学和统计方法

可以通过数组上的一组数学函数对整个数组或某个轴向的数据进行统计计算。sum、mean以及标准差std等聚合计算(aggregation,通常叫做约简(reduction))既可以当做数组的实例方法调用,也可以当做顶级NumPy函数使用。

这里,我生成了一些正态分布随机数据,然后做了聚类统计:

In [177]: arr = np.random.randn(5, 4)

In [178]: arr
Out[178]: 
array([[ 2.1695, -0.1149,  2.0037,  0.0296],
       [ 0.7953,  0.1181, -0.7485,  0.585 ],
       [ 0.1527, -1.5657, -0.5625, -0.0327],
       [-0.929 , -0.4826, -0.0363,  1.0954],
       [ 0.9809, -0.5895,  1.5817, -0.5287]])

In [179]: arr.mean()
Out[179]: 0.19607051119998253

In [180]: np.mean(arr)
Out[180]: 0.19607051119998253

In [181]: arr.sum()
Out[181]: 3.9214102239996507

mean和sum这类的函数可以接受一个axis选项参数,用于计算该轴向上的统计值,最终结果是一个少一维的数组: 

In [182]: arr.mean(axis=1)
Out[182]: array([ 1.022 ,  0.1875, -0.502 , -0.0881,  0.3611])

In [183]: arr.sum(axis=0)
Out[183]: array([ 3.1693, -2.6345,  2.2381,  1.1486])

这里,arr.mean(1)是“计算行的平均值”,arr.sum(0)是“计算每列的和”。

其他如cumsum和cumprod之类的方法则不聚合,而是产生一个由中间结果组成的数组: 

In [184]: arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])

In [185]: arr.cumsum()
Out[185]: array([ 0,  1,  3,  6, 10, 15, 21, 28])

在多维数组中,累加函数(如cumsum)返回的是同样大小的数组,但是会根据每个低维的切片沿着标记轴计算部分聚类: 

In [186]: arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])

In [187]: arr
Out[187]: 
array([[0, 1, 2],
       [3, 4, 5],
       [6, 7, 8]])

In [188]: arr.cumsum(axis=0)
Out[188]: 
array([[ 0,  1,  2],
       [ 3,  5,  7],
       [ 9, 12, 15]])

In [189]: arr.cumprod(axis=1)
Out[189]: 
array([[  0,   0,   0],
       [  3,  12,  60],
       [  6,  42, 336]])

 

用于布尔型数组的方法 

在上面这些方法中,布尔值会被强制转换为1(True)和0(False)。因此,sum经常被用来对布尔型数组中的True值计数: 

In [190]: arr = np.random.randn(100)

In [191]: (arr > 0).sum() # Number of positive values
Out[191]: 42

另外还有两个方法any和all,它们对布尔型数组非常有用。any用于测试数组中是否存在一个或多个True,而all则检查数组中所有值是否都是True: 

In [192]: bools = np.array([False, False, True, False])

In [193]: bools.any()
Out[193]: True

In [194]: bools.all()
Out[194]: False

排序

跟Python内置的列表类型一样,NumPy数组也可以通过sort方法就地排序:

In [195]: arr = np.random.randn(6)

In [196]: arr
Out[196]: array([ 0.6095, -0.4938,  1.24  , -0.1357,  1.43  , -0.8469])

In [197]: arr.sort()

In [198]: arr
Out[198]: array([-0.8469, -0.4938, -0.1357,  0.6095,  1.24  ,  1.43  ])

多维数组可以在任何一个轴向上进行排序,只需将轴编号传给sort即可:

In [199]: arr = np.random.randn(5, 3)

In [200]: arr
Out[200]: 
array([[ 0.6033,  1.2636, -0.2555],
       [-0.4457,  0.4684, -0.9616],
       [-1.8245,  0.6254,  1.0229],
       [ 1.1074,  0.0909, -0.3501],
       [ 0.218 , -0.8948, -1.7415]])

In [201]: arr.sort(1)

In [202]: arr
Out[202]: 
array([[-0.2555,  0.6033,  1.2636],
       [-0.9616, -0.4457,  0.4684],
       [-1.8245,  0.6254,  1.0229],
       [-0.3501,  0.0909,  1.1074],
       [-1.7415, -0.8948,  0.218 ]])

 唯一化以及其它的集合逻辑

NumPy提供了一些针对一维ndarray的基本集合运算。最常用的可能要数np.unique了,它用于找出数组中的唯一值并返回已排序的结果:

In [206]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])

In [207]: np.unique(names)
Out[207]: 
array(['Bob', 'Joe', 'Will'],
      dtype='<U4')

In [208]: ints = np.array([3, 3, 3, 2, 2, 1, 1, 4, 4])

In [209]: np.unique(ints)
Out[209]: array([1, 2, 3, 4])

 另一个函数np.in1d用于测试一个数组中的值在另一个数组中的成员资格,返回一个布尔型数组:

In [211]: values = np.array([6, 0, 0, 3, 2, 5, 6])

In [212]: np.in1d(values, [2, 3, 6])
Out[212]: array([ True, False, False,  True,  True, False,  True], dtype=bool)

 4.4 用于数组的文件输入输出

这一小节只讨论NumPy的内置二进制格式,因为更多的用户会使用pandas或其它工具加载文本或表格数据(见第6章)。

np.save和np.load是读写磁盘数组数据的两个主要函数。默认情况下,数组是以未压缩的原始二进制格式保存在扩展名为.npy的文件中的:

In [213]: arr = np.arange(10)

In [214]: np.save('some_array', arr)

通过np.savez可以将多个数组保存到一个未压缩文件中,将数组以关键字参数的形式传入即可:

In [216]: np.savez('array_archive.npz', a=arr, b=arr)

加载.npz文件时,你会得到一个类似字典的对象,该对象会对各个数组进行延迟加载

In [217]: arch = np.load('array_archive.npz')

In [218]: arch['b']
Out[218]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

如果要将数据压缩,可以使用numpy.savez_compressed:

In [219]: np.savez_compressed('arrays_compressed.npz', a=arr        , b=arr)

4.5 线性代数

线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分。不像某些语言(如MATLAB),通过*对两个二维数组相乘得到的是一个元素级的积,而不是一个矩阵点积。因此,NumPy提供了一个用于矩阵乘法的dot函数(既是一个数组方法也是numpy命名空间中的一个函数):

In [223]: x = np.array([[1., 2., 3.], [4., 5., 6.]])

In [224]: y = np.array([[6., 23.], [-1, 7], [8, 9]])

In [225]: x
Out[225]: 
array([[ 1.,  2.,  3.],
       [ 4.,  5.,  6.]])

In [226]: y
Out[226]: 
array([[  6.,  23.],
       [ -1.,   7.],
       [  8.,   9.]])

In [227]: x.dot(y)
Out[227]: 
array([[  28.,   64.],
       [  67.,  181.]])

 x.dot(y)等价于np.dot(x, y):

In [228]: np.dot(x, y)
Out[228]: 
array([[  28.,   64.],
       [  67.,  181.]])

一个二维数组跟一个大小合适的一维数组的矩阵点积运算之后将会得到一个一维数组:

In [229]: np.dot(x, np.ones(3))
Out[229]: array([  6.,  15.])

numpy.linalg中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西。它们跟MATLAB和R等语言所使用的是相同的行业标准线性代数库,如BLAS、LAPACK、Intel MKL(Math Kernel Library,可能有,取决于你的NumPy版本)等:

In [231]: from numpy.linalg import inv, qr

In [232]: X = np.random.randn(5, 5)

In [233]: mat = X.T.dot(X)

In [234]: inv(mat)
Out[234]: 
array([[  933.1189,   871.8258, -1417.6902, -1460.4005,  1782.1391],
       [  871.8258,   815.3929, -1325.9965, -1365.9242,  1666.9347],
       [-1417.6902, -1325.9965,  2158.4424,  2222.0191, -2711.6822],
       [-1460.4005, -1365.9242,  2222.0191,  2289.0575, -2793.422 ],
       [ 1782.1391,  1666.9347, -2711.6822, -2793.422 ,  3409.5128]])

In [235]: mat.dot(inv(mat))
Out[235]: 
array([[ 1.,  0., -0., -0., -0.],
       [-0.,  1.,  0.,  0.,  0.],
       [ 0.,  0.,  1.,  0.,  0.],
       [-0.,  0.,  0.,  1., -0.],
       [-0.,  0.,  0.,  0.,  1.]])

In [236]: q, r = qr(mat)

In [237]: r
Out[237]: 
array([[-1.6914,  4.38  ,  0.1757,  0.4075, -0.7838],
       [ 0.    , -2.6436,  0.1939, -3.072 , -1.0702],
       [ 0.    ,  0.    , -0.8138,  1.5414,  0.6155],
       [ 0.    ,  0.    ,  0.    , -2.6445, -2.1669],
       [ 0.    ,  0.    ,  0.    ,  0.    ,  0.0002]])

 4.6 伪随机数生成

numpy.random模块对Python内置的random进行了补充,增加了一些用于高效生成多种概率分布的样本值的函数。例如,你可以用normal来得到一个标准正态分布的4×4样本数组:

In [238]: samples = np.random.normal(size=(4, 4))

In [239]: samples
Out[239]: 
array([[ 0.5732,  0.1933,  0.4429,  1.2796],
       [ 0.575 ,  0.4339, -0.7658, -1.237 ],
       [-0.5367,  1.8545, -0.92  , -0.1082],
       [ 0.1525,  0.9435, -1.0953, -0.144 ]])

 而Python内置的random模块则只能一次生成一个样本值。从下面的测试结果中可以看出,如果需要产生大量样本值,numpy.random快了不止一个数量级:

In [240]: from random import normalvariate

In [241]: N = 1000000

In [242]: %timeit samples = [normalvariate(0, 1) for _ in range(N)]
1.77 s +- 126 ms per loop (mean +- std. dev. of 7 runs, 1 loop each)

In [243]: %timeit np.random.normal(size=N)
61.7 ms +- 1.32 ms per loop (mean +- std. dev. of 7 runs, 10 loops each)

 我们说这些都是伪随机数,是因为它们都是通过算法基于随机数生成器种子,在确定性的条件下生成的。你可以用NumPy的np.random.seed更改随机数生成种子:

In [244]: np.random.seed(1234)

numpy.random的数据生成函数使用了全局的随机种子。要避免全局状态,你可以使用numpy.random.RandomState,创建一个与其它隔离的随机数生成器: 

In [245]: rng = np.random.RandomState(1234)

In [246]: rng.randn(10)
Out[246]: 
array([ 0.4714, -1.191 ,  1.4327, -0.3127, -0.7206,  0.8872,  0.8596,
       -0.6365,  0.0157, -2.2427])

 

4.7 示例:随机漫步

 下面是一个通过内置的random模块以纯Python的方式实现1000步的随机漫步:

In [247]: import random
   .....: position = 0
   .....: walk = [position]
   .....: steps = 1000
   .....: for i in range(steps):
   .....:     step = 1 if random.randint(0, 1) else -1
   .....:     position += step
   .....:     walk.append(position)
   .....:
In [249]: plt.plot(walk[:100])

 不难看出,这其实就是随机漫步中各步的累计和,可以用一个数组运算来实现。因此,我用np.random模块一次性随机产生1000个“掷硬币”结果(即两个数中任选一个),将其分别设置为1或-1,然后计算累计和:

In [251]: nsteps = 1000

In [252]: draws = np.random.randint(0, 2, size=nsteps)

In [253]: steps = np.where(draws > 0, 1, -1)

In [254]: walk = steps.cumsum()

 有了这些数据之后,我们就可以沿着漫步路径做一些统计工作了,比如求取最大值和最小值:

 

In [255]: walk.min()
Out[255]: -3

In [256]: walk.max()
Out[256]: 31

一次模拟多个随机漫步

In [258]: nwalks = 5000

In [259]: nsteps = 1000

In [260]: draws = np.random.randint(0, 2, size=(nwalks, nsteps)) # 0 or 1

In [261]: steps = np.where(draws > 0, 1, -1)

In [262]: walks = steps.cumsum(1)

In [263]: walks
Out[263]: 
array([[  1,   0,   1, ...,   8,   7,   8],
       [  1,   0,  -1, ...,  34,  33,  32],
       [  1,   0,  -1, ...,   4,   5,   4],
       ..., 
       [  1,   2,   1, ...,  24,  25,  26],
       [  1,   2,   3, ...,  14,  13,  14],
       [ -1,  -2,  -3, ..., -24, -23, -22]])

现在,我们来计算所有随机漫步过程的最大值和最小值:

In [264]: walks.max()
Out[264]: 138

In [265]: walks.min()
Out[265]: -133

 

得到这些数据之后,我们来计算30或-30的最小穿越时间。这里稍微复杂些,因为不是5000个过程都到达了30。我们可以用any方法来对此进行检查:

In [266]: hits30 = (np.abs(walks) >= 30).any(1)

In [267]: hits30
Out[267]: array([False,  True, False, ..., False,  True, False], dtype=bool)

In [268]: hits30.sum() # Number that hit 30 or -30
Out[268]: 3410

然后我们利用这个布尔型数组选出那些穿越了30(绝对值)的随机漫步(行),并调用argmax在轴1上获取穿越时间: 

In [269]: crossing_times = (np.abs(walks[hits30]) >= 30).argmax(1)

In [270]: crossing_times.mean()
Out[270]: 498.88973607038122

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/124721.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

73.qt quick-通用可拖拽表盘示例

截图如下所示: 效果如下所示: 源码已上传至专栏群(第一章底部获取)中,感兴趣的自行下载 demo使用介绍 控件自定义属性已经封装出来了,如下图所示: main.qml如下所示: import QtQuick 2.14 import QtQuick.Window 2.14 import QtQuick.Extras 1.4 import QtQuick.Layouts 1.1…

微信小程序-会议OA项目03

目录 1.Flex布局简介 1.1 什么是flex布局 1.2 flex属性 2.轮播图--组件的使用 3.会议OA项目-首页 1.Flex布局简介 布局的传统解决方案&#xff0c;基于盒状模型&#xff0c;依赖 display属性 position属性 float属性 1.1 什么是flex布局 1) Flex是Flexible Box的缩写&…

攻防世界-fileclude

题目 访问题目场景 阅读php代码 <?php include("flag.php"); highlight_file(__FILE__); if(isset($_GET["file1"]) && isset($_GET["file2"])) {$file1 $_GET["file1"];$file2 $_GET["file2"];if(!empty($f…

法国半导体制造企业RIBER部署MBE技术以支持量子计算

图片来源&#xff1a;网络 法国半导体制造企业RIBER在2022年进一步提升了其在量子处理器耗材市场的发展水平。 早在2021年6月&#xff0c;RIBER已开始部署系统&#xff0c;它在法国图卢兹与 法国国家科学研究中心系统分析与架构实验室&#xff08;LAAS-CNRS&#xff09;创办联合…

Google Guice 1:如何实现依赖注入?

1. 待完善的邮箱程序 1.1 手动注入依赖 前一篇博文《谈谈自己对依赖注入的理解》&#xff0c;笔者只是基于依赖注入的思想&#xff0c;为EmailClient预留了依赖注入的入口 到目前为止&#xff0c;我们只是让dependent class预留了依赖注入的入口&#xff0c;要想实现依赖的自动…

TOPLAS‘07: Effective Field-Sensitive Pointer Analysis for C 字段敏感C程序指针分析

文章目录1. 集合约束式的指针分析1.1 基本介绍1.2 求解约束1.2.1 图传播1.2.2 迭代顺序1.2.3 节点替换 (Variable Subsititution)1.2.4 传递化简 (Transitive Reduction)1.2.5 集合的表示1.2.6 差分传播1.2.7 相同解的集合2. 扩展约束模型2.1 简介2.2 处理函数指针2.3 处理字段…

NNOM第一个模型实例

目录 一、keras开发环境搭建 二、安装visual studio 2019 1. 下载安装 2. 配置使用MSVC编译器 三、编译第一个NNOM的demo 1. 下载源码 2. 安装依赖库 3. 编译auto_test 四、移植 1. 新建新的VS项目 2. 拷贝相关源码 3. 配置工程 4. 编译并运行 一、keras开发环境搭…

Java并发——线程池

线程池 一、线程池的作用 线程的创建和销毁需要占用CPU资源&#xff0c;若频繁的进行创建和销毁会产生很大的开销&#xff0c;影响性能和系统稳定性。 线程池的优点&#xff1a; 线程池可以保存创建好的线程随用随取&#xff0c;降低资源消耗&#xff08;重复利用线程池中的…

一文读懂堡垒机对企业信息安全起到的重要作用

堡垒机的发展历程大致可分为以下三个阶段&#xff1a;      第一代堡垒机&#xff1a;堡垒机最初的理念起源于跳板机&#xff0c;但跳板机无法实现对运维人员操作行为进行控制和审计&#xff0c;一旦出现违规操作导致操作事故&#xff0c;很难快速定位原因和责任人。    …

Java分析-对象头

前言 HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding) HotSpot虚拟机的对象头(Object Header)包括两部分信息,第一部分用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁…

移动是否是商业bi的前景?

一 前言 五年前就有人预言商业智能BI移动化会成为必然趋势&#xff0c;如今5年时间已过&#xff0c;移动BI的普及程度并不如预期。原因主要是数据分析的交互性一直是很高的要求&#xff0c;手机屏幕的限制一直抑制了商业智能BI在移动端得到更好发挥的障碍。 比如数据看板或可…

[笔记] - springboot-jpa 使用sqlite 踩坑

前言&#xff08;可略过&#xff09; 最近准备写一些小项目来验证一下脑袋中的项目 因为是“小项目”&#xff0c;所以对于数据持久化的实现&#xff0c;就不想用mysql等很重的db了 而且不用考虑安全性&#xff0c;故首先想到的就是使用 sqlite 本地数据库即可 然后因为是使用…

Android进阶 之 SPI机制及实现原理

什么是SPI SPI &#xff0c;全称为 Service Provider Interface&#xff0c;是一种服务发现机制。它通过在ClassPath路径下的META-INF/services文件夹查找文件&#xff0c;自动加载文件里所定义的类。是Java提供的一套用来被第三方实现或者扩展的API&#xff0c;它可以用来启用…

BCryptPasswordEncoder加密与MD5加密的区别

MD5 加密说明 MD5&#xff08;Message Digest Algorithm 5&#xff09;中文名为消息摘要算法第五版&#xff0c;是计算机安全领域广泛使用的一种散列函数&#xff0c;用以提供消息的完整性保护。 MD5作为一种常用的摘要算法&#xff08;或指纹算法&#xff09;&#xff0c;其…

一文教会你如何利用领英多账号高效开发客户资源

作为全球最大的职业社交平台&#xff0c;领英&#xff08;linkedin&#xff09;的属性关键词包括“商业、互动和机会”。这些属性覆盖了领英全球超过6亿的用户&#xff0c;这决定了领英是一个拥有无限商业交易机会的社交平台。因此&#xff0c;越来越多的国内外企业不断在领英上…

如何在右键菜单添加将文档“转换为PDF”选项

本文介绍一种方法&#xff0c;可以实现右键快速将docx、doc、txt、ppt等文档转换为PDF文档 文章目录1. Acrobat DC 软件安装2.添加右键“转PDF”功能选项3.功能效果1. Acrobat DC 软件安装 下载链接&#xff1a; 1.百度网盘:链接 提取码: vumk 2.阿里云盘&#xff1a;链接…

虹科分享|关于SANS报告的顶级勒索软件洞察

近年来&#xff0c;勒索软件攻击经历了大流行加速的演变&#xff0c;而防御系统则难以跟上。勒索软件的第一阶段已经让位于新的、不同的、更好的和更坏的东西。为了帮助理解这一演变&#xff0c;Morphisec赞助了一份来自SANS的报告&#xff0c;探索勒索软件防御的现状。它研究了…

从Pearson相关系数到模板匹配的NCC方法

文章目录<center> NCC(Normalized Cross Correlation)1.**Pearson相关系数**2.**协方差 covariance**3. **方差 variance**4.模板匹配中的NCC方法5.实现过程6.测试结果7.部分核心源码NCC.cppNCC(Normalized Cross Correlation)从Pearson相关系数到模板匹配的NCC方法 1.P…

HTML5 本地存储

文章目录HTML5 本地存储Cookie的缺点localStorage简介简单使用sessionStorage简介简单使用indexedDB简介HTML5 本地存储 Cookie的缺点 在HTML4.01中&#xff0c;想要在浏览器端存储用户的某些数据时&#xff0c;我们一般只能使用Cookie来实现。 但是Cookie存在一些问题&…

如何进行企业设备管理?

如何进行企业设备管理&#xff1f; 点进这篇文章&#xff0c;让企业设备管理不再 难 难 难 &#xff01; 对于许多公司来说&#xff0c;特别是制造业&#xff0c;生产设备已成为企业生产线中最重要最核心的部分&#xff0c;因此设备管理是企业管理基础的重要组成部分。而在当…