NNOM第一个模型实例

news2025/1/15 12:55:07

目录

一、keras开发环境搭建

二、安装visual studio 2019

1. 下载安装

2. 配置使用MSVC编译器

三、编译第一个NNOM的demo

1. 下载源码

2. 安装依赖库

3. 编译auto_test

四、移植

1. 新建新的VS项目

2. 拷贝相关源码

3. 配置工程

4. 编译并运行


一、keras开发环境搭建

参考:keras环境搭建_卡卡6的博客-CSDN博客

二、安装visual studio 2019

1. 下载安装

选择VS2019的community版本进行安装。官网链接如下:

Visual Studio 2019 版本 16.11 发行说明 | Microsoft Learn

 注:(1)一定要使用默认的安装路径,即C盘;(2)只勾选“使用C++的桌面开发”这一项即可。

https://img-blog.csdnimg.cn/20200304112234113.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L1lTSjM2NzYzNTk4NA==,size_16,color_FFFFFF,t_70

安装结束,重启计算机。

可以简单新建一个C++工程,测试一下。--->略

2. 配置使用MSVC编译器

在当前用户环境变量中新建如下几个环境变量:

MSVC

C:\Program Files (x86)

\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.29.30133

如下图:

 按照同样的方法,依次新增如下环境变量:

WK10_BIN:

C:\Program Files (x86)\Windows Kits\10\bin\10.0.19041.0

WK10_LIB:

C:\Program Files (x86)\Windows Kits\10\Lib\10.0.19041.0

WK10_INCLUDE:

C:\Program Files (x86)\Windows Kits\10\Include\10.0.19041.0

INCLUDE:

%WK10_INCLUDE%\ucrt;%WK10_INCLUDE%\um;%WK10_INCLUDE%\shared;%MSVC%\include;

LIB:

%WK10_LIB%\um\x64;%WK10_LIB%\ucrt\x64;%MSVC%\lib\x64;

最后在Path环境变量下新增:

%MSVC%\bin\HostX64\x64

%WK10_BIN%\x64

如下图:

 

测试:新建一个文件hello.cpp

#include <stdio.h>

int main()

{

       printf("hello msvc\n");

       return 0;

}

Cmd命令行进入到该目录下,直接用cl指令编译源文件后可直接运行hello.exe

 到此为止,说明cl指令可用。后续keras模型编译会依赖于cl,所以这里的工作一定要做好!

三、编译第一个NNOM的demo

1. 下载源码

地址:GitHub - majianjia/nnom: A higher-level Neural Network library for microcontrollers.

2. 安装依赖库

Keras模型的构建和编译依赖于scons和机器学习库scikit-learn

pip install scons

pip install scikit-learn

3. 编译auto_test

直接进入demo目录,执行:python main.py

编译过程输出如下:

(base) C:\Users\a\Desktop\nnom-master\examples\auto_test>python main.py

['C:\\Users\\a\\Desktop\\nnom-master\\examples\\auto_test', 'D:\\Miniconda3\\python37.zip', 'D:\\Miniconda3\\DLLs', 'D:\\Miniconda3\\lib', 'D:\\Miniconda3', 'D:\\Miniconda3\\lib\\site-packages', 'D:\\Miniconda3\\lib\\site-packages\\win32', 'D:\\Miniconda3\\lib\\site-packages\\win32\\lib', 'D:\\Miniconda3\\lib\\site-packages\\Pythonwin', 'C:\\Users\\a\\Desktop\\nnom-master\\scripts']

60000 train samples

10000 test samples

x_train shape: (60000, 28, 28, 1)

data range 0.0 1.0

2022-12-27 16:39:09.432602: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the following CPU instructions in performance-critical operations:  AVX2

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

2022-12-27 16:39:09.442539: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x24e46b20410 initialized for platform Host (this does not guarantee that XLA will be used). Devices:

2022-12-27 16:39:09.442681: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version

Model: "functional_1"

_________________________________________________________________

Layer (type)                 Output Shape              Param #

=================================================================

input_1 (InputLayer)         [(None, 28, 28, 1)]       0

_________________________________________________________________

conv2d (Conv2D)              (None, 26, 26, 16)        160

_________________________________________________________________

batch_normalization (BatchNo (None, 26, 26, 16)        64

_________________________________________________________________

conv2d_1 (Conv2D)            (None, 22, 22, 16)        6416

_________________________________________________________________

batch_normalization_1 (Batch (None, 22, 22, 16)        64

_________________________________________________________________

leaky_re_lu (LeakyReLU)      (None, 22, 22, 16)        0

_________________________________________________________________

max_pooling2d (MaxPooling2D) (None, 11, 11, 16)        0

_________________________________________________________________

dropout (Dropout)            (None, 11, 11, 16)        0

_________________________________________________________________

depthwise_conv2d (DepthwiseC (None, 7, 7, 32)          320

_________________________________________________________________

batch_normalization_2 (Batch (None, 7, 7, 32)          128

_________________________________________________________________

re_lu (ReLU)                 (None, 7, 7, 32)          0

_________________________________________________________________

dropout_1 (Dropout)          (None, 7, 7, 32)          0

_________________________________________________________________

conv2d_2 (Conv2D)            (None, 7, 7, 16)          528

_________________________________________________________________

batch_normalization_3 (Batch (None, 7, 7, 16)          64

_________________________________________________________________

re_lu_1 (ReLU)               (None, 7, 7, 16)          0

_________________________________________________________________

max_pooling2d_1 (MaxPooling2 (None, 4, 4, 16)          0

_________________________________________________________________

dropout_2 (Dropout)          (None, 4, 4, 16)          0

_________________________________________________________________

flatten (Flatten)            (None, 256)               0

_________________________________________________________________

dense (Dense)                (None, 64)                16448

_________________________________________________________________

re_lu_2 (ReLU)               (None, 64)                0

_________________________________________________________________

dropout_3 (Dropout)          (None, 64)                0

_________________________________________________________________

dense_1 (Dense)              (None, 10)                650

_________________________________________________________________

softmax (Softmax)            (None, 10)                0

=================================================================

Total params: 24,842

Trainable params: 24,682

Non-trainable params: 160

_________________________________________________________________

Epoch 1/2

938/938 - 120s - loss: 0.5140 - accuracy: 0.8334 - val_loss: 0.1132 - val_accuracy: 0.9654

Epoch 2/2

938/938 - 117s - loss: 0.1902 - accuracy: 0.9421 - val_loss: 0.0777 - val_accuracy: 0.9749

binary test file generated: test_data.bin

test data length: 1000

32/32 - 0s - loss: 0.0960 - accuracy: 0.9700

Test loss: 0.09596335142850876

Top 1: 0.9700000286102295

[[ 84   0   0   0   0   1   0   0   0   0]

 [  0 126   0   0   0   0   0   0   0   0]

 [  1   1 110   0   0   0   0   3   1   0]

 [  0   0   0 103   0   3   0   1   0   0]

 [  0   1   0   0 104   0   1   0   0   4]

 [  0   0   0   0   0  86   1   0   0   0]

 [  3   0   0   0   0   0  84   0   0   0]

 [  0   0   0   0   0   1   0  98   0   0]

 [  2   0   1   0   1   0   0   1  83   1]

 [  0   0   0   0   0   0   0   2   0  92]]

input_1 Quantized method: max-min  Values max: 1.0 min: 0.0 dec bit 7

conv2d Quantized method: max-min  Values max: 0.8345297 min: -0.5735731 dec bit 7

batch_normalization Quantized method: max-min  Values max: 6.404142 min: -6.462939 dec bit 4

conv2d_1 Quantized method: max-min  Values max: 19.733093 min: -25.782127 dec bit 2

batch_normalization_1 Quantized method: max-min  Values max: 3.6588879 min: -4.0082974 dec bit 5

leaky_re_lu Quantized method: max-min  Values max: 3.6588879 min: -4.0082974 dec bit 5

max_pooling2d Quantized method: max-min  Values max: 3.6588879 min: -4.0082974 dec bit 5

dropout Quantized method: max-min  Values max: 3.6588879 min: -4.0082974 dec bit 5

depthwise_conv2d Quantized method: max-min  Values max: 1.4940153 min: -1.1628311 dec bit 6

batch_normalization_2 Quantized method: max-min  Values max: 6.617676 min: -5.725276 dec bit 4

re_lu Quantized method: max-min  Values max: 6.617676 min: -5.725276 dec bit 4

dropout_1 Quantized method: max-min  Values max: 6.617676 min: -5.725276 dec bit 4

conv2d_2 Quantized method: max-min  Values max: 5.6870685 min: -3.9420059 dec bit 4

batch_normalization_3 Quantized method: max-min  Values max: 5.288866 min: -3.8065898 dec bit 4

re_lu_1 Quantized method: max-min  Values max: 5.288866 min: -3.8065898 dec bit 4

max_pooling2d_1 Quantized method: max-min  Values max: 5.288866 min: -3.8065898 dec bit 4

dropout_2 Quantized method: max-min  Values max: 5.288866 min: -3.8065898 dec bit 4

flatten Quantized method: max-min  Values max: 5.288866 min: -3.8065898 dec bit 4

dense Quantized method: max-min  Values max: 9.351792 min: -8.989536 dec bit 3

re_lu_2 Quantized method: max-min  Values max: 9.351792 min: -8.989536 dec bit 3

dropout_3 Quantized method: max-min  Values max: 9.351792 min: -8.989536 dec bit 3

dense_1 Quantized method: max-min  Values max: 17.520363 min: -14.6242285 dec bit 2

softmax Quantized method: max-min  Values max: 0.9999988 min: 1.5207032e-12 dec bit 7

quantisation list {'input_1': [7, 0], 'conv2d': [4, 0], 'batch_normalization': [4, 0], 'conv2d_1': [5, 0], 'batch_normalization_1': [5, 0], 'leaky_re_lu': [5, 0], 'max_pooling2d': [5, 0], 'dropout': [5, 0], 'depthwise_conv2d': [4, 0], 'batch_normalization_2': [4, 0], 're_lu': [4, 0], 'dropout_1': [4, 0], 'conv2d_2': [4, 0], 'batch_normalization_3': [4, 0], 're_lu_1': [4, 0], 'max_pooling2d_1': [4, 0], 'dropout_2': [4, 0], 'flatten': [4, 0], 'dense': [3, 0], 're_lu_2': [3, 0], 'dropout_3': [3, 0], 'dense_1': [2, 0], 'softmax': [7, 0]}

fusing batch normalization to conv2d

original weight max 0.2417007 min -0.20782447

original bias max 0.10783075 min -0.08728593

fused weight max 3.562787 min -3.2020652

fused bias max 0.51197034 min -0.49423537

quantizing weights for layer conv2d

    tensor_conv2d_kernel_0 dec bit 5

    tensor_conv2d_bias_0 dec bit 7

quantizing weights for layer batch_normalization

fusing batch normalization to conv2d_1

original weight max 0.19523335 min -0.1901753

original bias max 0.029084973 min -0.0711878

fused weight max 0.043349944 min -0.044777423

fused bias max -0.16451724 min -0.49612433

quantizing weights for layer conv2d_1

    tensor_conv2d_1_kernel_0 dec bit 11

    tensor_conv2d_1_bias_0 dec bit 8

quantizing weights for layer batch_normalization_1

fusing batch normalization to depthwise_conv2d

original weight max 0.35383728 min -0.23351322

original bias max 0.042270824 min -0.033526164

fused weight max 4.7558317 min -2.1644483

fused bias max 0.95259607 min -1.1018924

quantizing weights for layer depthwise_conv2d

    tensor_depthwise_conv2d_depthwise_kernel_0 dec bit 4

    tensor_depthwise_conv2d_bias_0 dec bit 6

quantizing weights for layer batch_normalization_2

fusing batch normalization to conv2d_2

original weight max 0.5379859 min -0.4994891

original bias max 0.014815442 min -0.011116973

fused weight max 0.62768686 min -0.4733633

fused bias max 0.5063162 min -0.5095656

quantizing weights for layer conv2d_2

    tensor_conv2d_2_kernel_0 dec bit 7

    tensor_conv2d_2_bias_0 dec bit 7

quantizing weights for layer batch_normalization_3

quantizing weights for layer dense

    tensor_dense_kernel_0 dec bit 8

    tensor_dense_bias_0 dec bit 11

quantizing weights for layer dense_1

    tensor_dense_1_kernel_0 dec bit 8

    tensor_dense_1_bias_0 dec bit 10

scons: Reading SConscript files ...

scons: done reading SConscript files.

scons: Building targets ...

CC main.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

main.c

CC C:\Users\a\Desktop\nnom-master\src\core\nnom.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom.c

CC C:\Users\a\Desktop\nnom-master\src\core\nnom_layers.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_layers.c

CC C:\Users\a\Desktop\nnom-master\src\core\nnom_tensor.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_tensor.c

CC C:\Users\a\Desktop\nnom-master\src\core\nnom_utils.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_utils.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_activation.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_activation.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_avgpool.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_avgpool.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_baselayer.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_baselayer.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_concat.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_concat.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_conv2d.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_conv2d.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_conv2d_trans.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_conv2d_trans.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_cropping.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_cropping.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_dense.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_dense.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_dw_conv2d.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_dw_conv2d.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_flatten.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_flatten.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_global_pool.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_global_pool.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_gru_cell.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_gru_cell.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_input.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_input.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_lambda.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_lambda.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_lstm_cell.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_lstm_cell.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_matrix.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_matrix.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_maxpool.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_maxpool.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_output.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_output.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_reshape.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_reshape.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_rnn.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_rnn.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_simple_cell.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_simple_cell.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_softmax.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_softmax.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_sumpool.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_sumpool.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_upsample.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_upsample.c

CC C:\Users\a\Desktop\nnom-master\src\layers\nnom_zero_padding.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_zero_padding.c

CC C:\Users\a\Desktop\nnom-master\src\backends\nnom_local.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_local.c

CC C:\Users\a\Desktop\nnom-master\src\backends\nnom_local_q15.c

cl: 命令行 warning D9002 :忽略未知选项“-std=c99”

nnom_local_q15.c

LINK mnist.exe

scons: done building targets.

validation size: 785024

Model version: 0.4.3

NNoM version 0.4.3

To disable logs, please void the marco 'NNOM_LOG(...)' in 'nnom_port.h'.

Data format: Channel last (HWC)

Start compiling model...

Layer(#)         Activation    output shape    ops(MAC)   mem(in, out, buf)      mem blk lifetime

-------------------------------------------------------------------------------------------------

#1   Input      -          - (  28,  28,   1,)          (   784,   784,     0)    1 - - -  - - - -

#2   Conv2D     -          - (  26,  26,  16,)      97k (   784, 10816,     0)    1 1 - -  - - - -

#3   Conv2D     - LkyReLU  - (  22,  22,  16,)    3.09M ( 10816,  7744,     0)    1 1 - -  - - - -

#4   MaxPool    -          - (  11,  11,  16,)          (  7744,  1936,     0)    1 1 1 -  - - - -

#5   DW_Conv2D  - AdvReLU  - (   7,   7,  32,)      14k (  1936,  1568,     0)    1 - 1 -  - - - -

#6   Conv2D     - ReLU     - (   7,   7,  16,)      25k (  1568,   784,     0)    1 1 - -  - - - -

#7   MaxPool    -          - (   4,   4,  16,)          (   784,   256,     0)    1 1 1 -  - - - -

#8   Flatten    -          - ( 256,          )          (   256,   256,     0)    - - 1 -  - - - -

#9   Dense      - ReLU     - (  64,          )      16k (   256,    64,   512)    1 1 1 -  - - - -

#10  Dense      -          - (  10,          )      640 (    64,    10,   128)    1 1 1 -  - - - -

#11  Softmax    -          - (  10,          )          (    10,    10,     0)    1 - 1 -  - - - -

#12  Output     -          - (  10,          )          (    10,    10,     0)    1 - - -  - - - -

-------------------------------------------------------------------------------------------------

Memory cost by each block:

 blk_0:7744  blk_1:10816  blk_2:1936  blk_3:0  blk_4:0  blk_5:0  blk_6:0  blk_7:0

 Memory cost by network buffers: 20496 bytes

 Total memory occupied: 24536 bytes

Processing 12%

Processing 25%

Processing 38%

Processing 51%

Processing 63%

Processing 76%

Processing 89%

Processing 100%

Prediction summary:

Test frames: 1000

Test running time: 0 sec

Model running time: 0 ms

Average prediction time: 0 us

Top 1 Accuracy: 97.20%

Top 2 Accuracy: 98.70%

Top 3 Accuracy: 98.80%

Top 4 Accuracy: 99.20%

Confusion matrix:

predict     0     1     2     3     4     5     6     7     8     9

actual

   0 |     84     0     0     0     0     1     0     0     0     0   |  98%

   1 |      0   126     0     0     0     0     0     0     0     0   | 100%

   2 |      2     0   110     0     0     0     1     3     0     0   |  94%

   3 |      0     0     0   104     0     2     0     1     0     0   |  97%

   4 |      0     1     0     0   105     0     0     0     0     4   |  95%

   5 |      0     0     0     0     0    86     1     0     0     0   |  98%

   6 |      3     0     0     0     0     0    84     0     0     0   |  96%

   7 |      0     0     0     0     0     1     0    98     0     0   |  98%

   8 |      2     0     1     0     1     0     0     1    83     1   |  93%

   9 |      0     0     0     0     0     0     0     2     0    92   |  97%

Print running stat..

Layer(#)        -   Time(us)     ops(MACs)   ops/us

--------------------------------------------------------

#1  Input      -         0

#2  Conv2D     -         0          97k

#3  Conv2D     -         0        3.09M

#4  MaxPool    -         0

#5  DW_Conv2D  -         0          14k

#6  Conv2D     -         0          25k

#7  MaxPool    -         0

#8  Flatten    -         0

#9  Dense      -         0          16k

#10 Dense      -         0          640

#11 Softmax    -         0

#12 Output     -         0

Summary:

Total ops (MAC): 3251168(3.25M)

Prediction time :0us

Total memory:24536

Top 1 Accuracy on Keras 97.00%

Top 1 Accuracy on NNoM  97.20%

(base) C:\Users\a\Desktop\nnom-master\examples\auto_test>

等待几分钟,最后看到输出:

Top 1 Accuracy on Keras 97.00%

Top 1 Accuracy on NNoM  97.20%

说明模型训练结束。

下面几个文件重点关注:

main.c:模型初始化和运行,推理

weights.h:模型结构和相关参数,是上一步骤训练的结果

test_data.bin:测试用的输入数据集

四、移植

1. 新建新的VS项目

工程自由命名,这里命名为auto_test。建立过程略。

2. 拷贝相关源码

将NNOM源码目录中的这三个目录拷贝到VS工程目录下,这是NNOM源码目录:

将上一步骤中这三个文件也拷贝到VS工程目录下:main.c  weights.h  test_data.bin

最终的VS工程目录如下:

 

3. 配置工程

(1)将main.c以及整个src目录都添加到工程中。

(2)配置头文件路径

右键--->属性--->VC++目录--->包含目录:添加inc和port目录

 

4. 编译并运行

输出如下,模型成功运行,仅依赖于C环境:

 并且工程目录下生成了结果文件:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/124710.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java并发——线程池

线程池 一、线程池的作用 线程的创建和销毁需要占用CPU资源&#xff0c;若频繁的进行创建和销毁会产生很大的开销&#xff0c;影响性能和系统稳定性。 线程池的优点&#xff1a; 线程池可以保存创建好的线程随用随取&#xff0c;降低资源消耗&#xff08;重复利用线程池中的…

一文读懂堡垒机对企业信息安全起到的重要作用

堡垒机的发展历程大致可分为以下三个阶段&#xff1a;      第一代堡垒机&#xff1a;堡垒机最初的理念起源于跳板机&#xff0c;但跳板机无法实现对运维人员操作行为进行控制和审计&#xff0c;一旦出现违规操作导致操作事故&#xff0c;很难快速定位原因和责任人。    …

Java分析-对象头

前言 HotSpot虚拟机中,对象在内存中存储的布局可以分为三块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding) HotSpot虚拟机的对象头(Object Header)包括两部分信息,第一部分用于存储对象自身的运行时数据, 如哈希码(HashCode)、GC分代年龄、锁…

移动是否是商业bi的前景?

一 前言 五年前就有人预言商业智能BI移动化会成为必然趋势&#xff0c;如今5年时间已过&#xff0c;移动BI的普及程度并不如预期。原因主要是数据分析的交互性一直是很高的要求&#xff0c;手机屏幕的限制一直抑制了商业智能BI在移动端得到更好发挥的障碍。 比如数据看板或可…

[笔记] - springboot-jpa 使用sqlite 踩坑

前言&#xff08;可略过&#xff09; 最近准备写一些小项目来验证一下脑袋中的项目 因为是“小项目”&#xff0c;所以对于数据持久化的实现&#xff0c;就不想用mysql等很重的db了 而且不用考虑安全性&#xff0c;故首先想到的就是使用 sqlite 本地数据库即可 然后因为是使用…

Android进阶 之 SPI机制及实现原理

什么是SPI SPI &#xff0c;全称为 Service Provider Interface&#xff0c;是一种服务发现机制。它通过在ClassPath路径下的META-INF/services文件夹查找文件&#xff0c;自动加载文件里所定义的类。是Java提供的一套用来被第三方实现或者扩展的API&#xff0c;它可以用来启用…

BCryptPasswordEncoder加密与MD5加密的区别

MD5 加密说明 MD5&#xff08;Message Digest Algorithm 5&#xff09;中文名为消息摘要算法第五版&#xff0c;是计算机安全领域广泛使用的一种散列函数&#xff0c;用以提供消息的完整性保护。 MD5作为一种常用的摘要算法&#xff08;或指纹算法&#xff09;&#xff0c;其…

一文教会你如何利用领英多账号高效开发客户资源

作为全球最大的职业社交平台&#xff0c;领英&#xff08;linkedin&#xff09;的属性关键词包括“商业、互动和机会”。这些属性覆盖了领英全球超过6亿的用户&#xff0c;这决定了领英是一个拥有无限商业交易机会的社交平台。因此&#xff0c;越来越多的国内外企业不断在领英上…

如何在右键菜单添加将文档“转换为PDF”选项

本文介绍一种方法&#xff0c;可以实现右键快速将docx、doc、txt、ppt等文档转换为PDF文档 文章目录1. Acrobat DC 软件安装2.添加右键“转PDF”功能选项3.功能效果1. Acrobat DC 软件安装 下载链接&#xff1a; 1.百度网盘:链接 提取码: vumk 2.阿里云盘&#xff1a;链接…

虹科分享|关于SANS报告的顶级勒索软件洞察

近年来&#xff0c;勒索软件攻击经历了大流行加速的演变&#xff0c;而防御系统则难以跟上。勒索软件的第一阶段已经让位于新的、不同的、更好的和更坏的东西。为了帮助理解这一演变&#xff0c;Morphisec赞助了一份来自SANS的报告&#xff0c;探索勒索软件防御的现状。它研究了…

从Pearson相关系数到模板匹配的NCC方法

文章目录<center> NCC(Normalized Cross Correlation)1.**Pearson相关系数**2.**协方差 covariance**3. **方差 variance**4.模板匹配中的NCC方法5.实现过程6.测试结果7.部分核心源码NCC.cppNCC(Normalized Cross Correlation)从Pearson相关系数到模板匹配的NCC方法 1.P…

HTML5 本地存储

文章目录HTML5 本地存储Cookie的缺点localStorage简介简单使用sessionStorage简介简单使用indexedDB简介HTML5 本地存储 Cookie的缺点 在HTML4.01中&#xff0c;想要在浏览器端存储用户的某些数据时&#xff0c;我们一般只能使用Cookie来实现。 但是Cookie存在一些问题&…

如何进行企业设备管理?

如何进行企业设备管理&#xff1f; 点进这篇文章&#xff0c;让企业设备管理不再 难 难 难 &#xff01; 对于许多公司来说&#xff0c;特别是制造业&#xff0c;生产设备已成为企业生产线中最重要最核心的部分&#xff0c;因此设备管理是企业管理基础的重要组成部分。而在当…

mysql-基础-约束多表关系多表查询事务

文章目录mysql基础1&#xff0c;约束1.1 概念1.2 分类1.3 非空约束1.4 唯一约束1.5 主键约束1.6 默认约束1.7 约束练习1.8 外键约束1.8.1 概述1.8.2 语法1.8.3 练习2&#xff0c;数据库设计2.1 数据库设计简介2.2 表关系(一对多)2.3 表关系(多对多)2.4 表关系(一对一)2.5 数据库…

刘鹏的2022年度总结

[ 这是 2022 博客之星 的竞选帖子&#xff0c; 请你在这里增加其他内容。接下来分享这一年的收获&#xff0c;感悟&#xff0c;以及 对CSDN 产品的反馈和 2023 年的希望。 ] 目录 1. 学习收获 1.1 心路历程 1.2 基本收支 2. 未来展望 2.1 UR3机械臂ROS 2.2 论文 2.3 开…

电线电缆行业mes解决方案,打造全新信息化车间

电线电缆行业虽然只是一个配套行业&#xff0c;却占据着中国电工行业1/4的产值。它产品种类众多&#xff0c;应用范围十分广泛&#xff0c;涉及到电力、建筑、通信&#xff0c;制造等行业&#xff0c;与国民经济的各个部门都密切相关。电线电续还被称为国民经济的“动脉”与“神…

STM32理论 —— 看门狗

文章目录1. 简述2. 独立看门狗 IWDG2.1 IWDG 相关寄存器2.1.1 键值寄存器IWDG_KR2.1.2 预分频寄存器IWDG_PR与重装载寄存器IWDG_RLR2.2 核心代码1. 简述 STM32 内部自带了 2 个看门狗&#xff1a;独立看门狗&#xff08;IWDG&#xff09;和窗口看门狗&#xff08;WWDG&#xff…

5. 最长回文子串

题目描述 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 如果字符串的反序与原始字符串相同&#xff0c;则该字符串称为回文字符串。 示例 1&#xff1a; 输入&#xff1a;s “babad” 输出&#xff1a;“bab” 解释&#xff1a;“aba” 同样是符合题意的答案。 示…

Redis集群系列四 —— 哨兵集群搭建

准备实例和配置 搭建一个三节点的 Sentinel 集群&#xff0c;来监管之前的 Redis 主从集群&#xff0c;如图&#xff1a; 参考上述配置&#xff0c;分别复制 redis 下的 sentinel.conf 文件&#xff0c;如图&#xff1a; 文件中除端口外&#xff0c;其它配置都是一样的。 启动…

路由与交换期末复习整理

一、前言 本文是对前期在校内学习路由与交换课程时对相关知识点的整理&#xff0c;供期末复习参考。 二、选择题知识点 1. 启动配置保存的位置 NVRAM 2. 路由器的功能 网络连接功能、&#xff08;数据处理&#xff09;和设备管理功能。 3. 打开路由器接口的命令 int加接口…