MVCC(多版本并发控制)

news2024/11/16 7:43:34

一、什么是MVCC

MVCC是为了解决数据库在不加锁的前提下提升并发性和读取效率的一种思想

数据库有已下几种并发情况

  • 读-读:不会产生并发问题
  • 读-写:发生隔离性问题,可能导致脏读、幻读、不可重复度
  • 写-写:可能存在数据丢失

为了防止并发问题,一般采用两种读取方式;

  • 当前读:DML语句和加排它锁,select lock in share mode加共享锁,确保读取为最新数据
  • 快照读:读写时不加锁、可能读取到历史数据

当前读(加锁)+快照(MVCC)读保证了事务的隔离性

MVCC 就是为了实现读-写冲突不加锁,而这个读指的就是快照读, 而非当前读,当前读实际上是一种加锁的操作,是悲观锁的实现


二、MVCC实现原理 

三个部分:隐式字段+undo版本链+read view视图

2.1、隐式字段

表内的每行记录除了我们自定义的字段外,还有数据库隐式字段段DB_TRX_IDDB_ROLL_PTRDB_ROW_ID 

  • DB_TRX_ID :记录创建这条记录或最后一次修改该记录的事务 ID
  • DB_ROLL_PTR:回滚指针,指向这条记录的上一个版本
  • DB_ROW_ID:隐含的自增 ID(隐藏主键),当前表没有主键,InnoDB 自动产生聚集索引

2.2、undo版本链 

不同的事务或相同事务对同一条记录修改是,会将当前记录先copy一份当undo log中,同时该记录的DB_TRX_ID会自增,DB_ROLL_PTR指向修改前记录的地址。以此形成版本链表


2.3、read view视图 

如上图,现在我们生成了4个版本,当select的时候会选取哪个版本呢?这时候就需要根据read view里维护的字段通过一定规则对比后最终确认所读取的版本

当然,不同隔离级别下生成read view的时机不同

RC级别下:每次select都会生成一个read view 

RR级别下:开启事务后第一个select生成read view,后续的select复用当前read view(由此可知在read view相同的情况下,根据一定规则匹配后读取到的版本肯定是相同的,也就解决了不可重复读的问题)

  • m_ids:未提交事务的DTX_ID的集合
  • creator_trx_id:创建read view视图视图的事务ID

总结一下:

当前事务或其它事务修改同一个数据时,会被undolog记录,并通过roll_point形成版本链,接着read view会根据里面维护的字段通过一定规则对比各个版本数据的隐式字段,最终匹配出可查询的版本具体为哪一个。当然,由于隔离级别不同,产生read view的时机不同,读取到的版本也不同,RC:每一次快照度都会产生read view、RR:第一次快照度后产生read view,后续复用

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1151181.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

京东科技埋点数据治理和平台建设实践 | 京东云技术团队

导读 本文核心内容聚焦为什么要埋点治理、埋点治理的方法论和实践、奇点一站式埋点管理平台的建设和创新功能。读者可以从全局角度深入了解埋点、埋点治理的整体思路和实践方法,落地的埋点工具和创新功能都有较高的实用参考价值。遵循埋点治理的方法论,…

sd模型测试之又纯又欲的Copax Anime XL动漫大模型

除了各种美女图外,AI绘画大模型中,最受欢迎的是动漫。 动漫又分好几种,幼儿向、热血向、成人向等。 之前我推荐了几个风格不同的动漫大模型,今天推荐一个成人向的动漫大模型:Copax Anime XL。 当然了,成…

One-to-N N-to-One: Two Advanced Backdoor Attacks Against Deep Learning Models

One-to-N & N-to-One: Two Advanced Backdoor Attacks Against Deep Learning Models----《一对N和N对一:针对深度学习模型的两种高级后门攻击》 1对N: 通过控制同一后门的不同强度触发多个后门 N对1: 只有当所有N个后门都满足时才会触发…

【JAVA学习笔记】54 - 集合 - Set类、HashSet类(难点)

项目代码 https://github.com/yinhai1114/Java_Learning_Code/tree/main/IDEA_Chapter14/src/com/yinhai/set_ Set类 一、基本介绍 1.无序(添加和取出的顺序不一致) ,没有索引[后面演示] 2.不允许重复元素,所以最多包含一个null 3.JDK API中Set接口的实现类有: …

SQL BETWEEN运算符

SQL BETWEEN 运算符 BETWEEN运算符用于选取介于两个值之间的数据范围内的值。 BETWEEN运算符选择给定范围内的值。值可以是数字,文本或日期。 BETWEEN运算符是包含性的:包括开始和结束值,且开始值需小于结束值。 SQL BETWEEN 语法 SELECT …

【蓝桥杯选拔赛真题06】C++数字评级 青少年组蓝桥杯C++选拔赛真题 STEMA比赛真题解析

目录 C/C++数字评级 一、题目要求 1、编程实现 2、输入输出 二、算法分析 <

gma 2 教程(三)坐标参考系统:2.基准面/椭球体

安装 gma&#xff1a;pip install gma 地球是一个近似于椭球体的三维物体&#xff0c;而地球上的各种测量和计算都需要一个基准面来进行。基准面是一个虚拟的平面&#xff0c;用于测量和计算地球上的各种物理量。在地球科学中&#xff0c;基准面通常是一个参考椭球体&#xff0…

rabbitmq安装、基本使用

docker run -it --rm --name rabbitmq -p 5672:5672 -p 15672:15672 rabbitmq:3.12-management docker会自己下载&#xff0c;然后运行 进入docker&#xff1a; docker exec -it rabbitmq bash 进入容器&#xff0c;重启rabbitmq&#xff1a;rabbitmq-server restart 感觉所有的…

基于平衡优化器算法的无人机航迹规划-附代码

基于平衡优化器算法的无人机航迹规划 文章目录 基于平衡优化器算法的无人机航迹规划1.平衡优化器搜索算法2.无人机飞行环境建模3.无人机航迹规划建模4.实验结果4.1地图创建4.2 航迹规划 5.参考文献6.Matlab代码 摘要&#xff1a;本文主要介绍利用平衡优化器算法来优化无人机航迹…

前端如何实现多种方式圆形可点击区域

前言 四种方式都可以实现在圆形区域内添加点击事件&#xff0c;选择哪种方式可以根据具体情况选择。其中使用canvas实现的方式可以更好地适用于需要绘制复杂图形的情况下。 方式一&#xff1a;border-radius 使用CSS的border-radius属性创建圆形区域&#xff0c;然后通过绑定点…

Spring Boot 3系列之一(初始化项目)

近期&#xff0c;JDK 21正式发布&#xff0c;而Spring Boot 3也推出已有一段时间。作为这两大技术领域的新一代标杆&#xff0c;它们带来了许多令人振奋的新功能和改进。尽管已有不少博客和文章对此进行了介绍&#xff0c;但对于我们这些身处一线的开发人员来说&#xff0c;有些…

Generalized Zero-Shot Learning With Multi-Channel Gaussian Mixture VAE

L D A _{DA} DA​最大化编码后两种特征分布之间的相似性 辅助信息 作者未提供代码

通过引入插件Grid Masschange实现批量修改交互网格数据

现状描述: 很多时候我们需要对交互式网格进行数据更新&#xff0c;单个或少量的数据还好&#xff0c;一旦数据量过大&#xff0c;APEX现有的原生手动输入就不能满足需求&#xff0c;既浪费人力又浪费时间&#xff0c;白白损失了劳动成本&#xff0c;应对这种情况&#xff0c;有…

flink 反压原理

背景 在flink中由于数据倾斜或者数据处理速率的不匹配&#xff0c;很容易引起反压&#xff0c;本文就看一下flink反压的原理 flink反压原理 flink全流程pineline的反压实现其实依赖于TaskManager之间的反压和TaskManager内部的反压来实现 1.TaskManager之间的反压 2.Task…

Linux指令【上】

目录 目录结构 ls cd stat touch mkdir whoami 查看当前帐号是谁 who 查看当前有哪些人在使用 pwd 当前的工作目录 目录结构 目录结构就是一颗多叉树的样子 路径 我们从 / 目录开始&#xff0c;定位一个叶子文件的…

【Holocubic简化修改版——基于STM32F405+ESP8266-12F:使用FreeRTOS和标准库】

一.简介 第一次看到Holobubic项目是稚晖君视频&#xff1a;【自制】如何制作一个赛博朋克风格的 百大UP奖杯 【软核】 但是稚晖君的项目是基于ESP32PICO-D4&#xff0c;因此我想尝试使用STM32复刻一个。实际上&#xff0c;使用STM32复刻Holocubic在CSDN上已经有一位博主发布了他…

vsCode安装CodeRunner插件输出中文乱码问题

1 vsCode下载 vcCode官网地址&#xff1a;https://code.visualstudio.com/ 2 安装CodeRunner 通过Ctrl Shift P 找到 settings找到code-runner.executorMap&#xff0c;在 settings.json 中加入 "code-runner.executorMap": {....."python": "s…

MSQL系列(十一) Mysql实战-Inner Join算法底层原理及驱动表选择

Mysql实战-Inner Join算法驱动表选择 前面我们讲解了BTree的索引结构&#xff0c;及Mysql的存储引擎MyISAM和InnoDB,也详细讲解下 left Join的底层驱动表 选择, 并且初步了解 Inner join是Mysql 主动选择优化的驱动表&#xff0c;知道索引要建立在被驱动表上 那么对于Inner j…

AdaBins:使用自适应bins进行深度估计

论文&#xff1a;https://arxiv.org/abs/2011.14141 代码&#xff1a;https://github.com/open-mmlab/mmsegmentation/tree/main/projects/Adabins 0、摘要 本文主要解决了从单个RGB输入图像估计高质量密集深度图的问题。我们从一个baseline的encoder-decoder CNN结构出发&…