实现功能
前面两篇文章分别介绍了两种搭建神经网络模型的方法,一种是基于tensorflow的keras框架,另一种是继承父类自定义class类,本篇文章将编写原生代码搭建BP神经网络。
实现代码
import tensorflow as tf
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 数据预处理
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 设置超参数
learning_rate = 0.001
num_epochs = 100
batch_size = 32
# 定义输入和输出的维度
input_dim = X.shape[1]
output_dim = len(set(y))
# 定义权重和偏置项
W1 = tf.Variable(tf.random.normal(shape=(input_dim, 64), dtype=tf.float64))
b1 = tf.Variable(tf.zeros(shape=(64,), dtype=tf.float64))
W2 = tf.Variable(tf.random.normal(shape=(64, 64), dtype=tf.float64))
b2 = tf.Variable(tf.zeros(shape=(64,), dtype=tf.float64))
W3 = tf.Variable(tf.random.normal(shape=(64, output_dim), dtype=tf.float64))
b3 = tf.Variable(tf.zeros(shape=(output_dim,), dtype=tf.float64))
# 定义前向传播函数
def forward_pass(X):
X = tf.cast(X, tf.float64)
h1 = tf.nn.relu(tf.matmul(X, W1) + b1)
h2 = tf.nn.relu(tf.matmul(h1, W2) + b2)
logits = tf.matmul(h2, W3) + b3
return logits
# 定义损失函数
def loss_fn(logits, labels):
return tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits))
# 定义优化器
optimizer = tf.optimizers.Adam(learning_rate)
# 定义准确率指标
accuracy_metric = tf.metrics.SparseCategoricalAccuracy()
# 定义训练步骤
def train_step(inputs, labels):
with tf.GradientTape() as tape:
logits = forward_pass(inputs)
loss_value = loss_fn(logits, labels)
gradients = tape.gradient(loss_value, [W1, b1, W2, b2, W3, b3])
optimizer.apply_gradients(zip(gradients, [W1, b1, W2, b2, W3, b3]))
accuracy_metric(labels, logits)
return loss_value
# 进行训练
for epoch in range(num_epochs):
epoch_loss = 0.0
accuracy_metric.reset_states()
for batch_start in range(0, len(X_train), batch_size):
batch_end = batch_start + batch_size
batch_X = X_train[batch_start:batch_end]
batch_y = y_train[batch_start:batch_end]
loss = train_step(batch_X, batch_y)
epoch_loss += loss
train_loss = epoch_loss / (len(X_train) // batch_size)
train_accuracy = accuracy_metric.result()
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}, Accuracy: {train_accuracy:.4f}")
# 进行评估
logits = forward_pass(X_test)
test_loss = loss_fn(logits, y_test)
test_accuracy = accuracy_metric(y_test, logits)
print(f"Test Loss: {test_loss:.4f}, Test Accuracy: {test_accuracy:.4f}")
实现效果
本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据挖掘相关科研工作,对数据挖掘有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习基础知识与案例。
致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。
邀请三个朋友关注V订阅号:数据杂坛,即可在后台联系我获取相关数据集和源码,送有关数据分析、数据挖掘、机器学习、深度学习相关的电子书籍。