【RocketMQ】RocketMQ 5.0新特性(三)- Controller模式

news2024/9/21 2:33:15

在RocketMQ 5.0以前,有两种集群部署模式,分别为主从模式(Master-Slave模式)和Dledger模式。

主从模式
主从模式中分为Master和Slave两个角色,集群中可以有多个Master节点,一个Master节点可以有多个Slave节点。Master节点负责接收生产者发送的写入请求,将消息写入CommitLog文件,Slave节点会与Master节点建立连接,从Master节点同步消息数据(有同步复制和异步复制两种方式)。
消费者可以从Master节点拉取消息,也可以从Slave节点拉取消息。

在RocketMQ 4.5版 本之前,如果Master宕机,不支持自动将Slave切换为Master,需要人工介入。

Dledger模式
为了解决主从架构下Slave不能自动切换为Master的问题,4.5版本之后提供了DLedger模式,使用Raft算法,如果Master节点出现故障,可以自动从Slave节点中选举出新的Master进行切换。

存在问题
(1)根据Raft算法的多数原则,集群至少有三个节点以上,在消息写入时,也需要大多数的Follower节点响应成功才能认为消息写入成功;
(2)Dledger模式下,进行消息写入的时候,使用的是openmessaging包中提供的接口,无法利用RocketMQ原生的存储和复制能力(比如非Dledger模式下使用暂存池方式写入);
(3)存在两套日志复制流程(主从模式下一套、Dledger模式下一套),不统一;
主从同步实现原理

Dledger模式下的日志复制

Controller模式
为了解决如上问题,RocketMQ 5.0以后推出了Controller模式,它的特点如下:
(1)在主从部署模式下就具有自动切换Master的能力,5.0之前需要使用DLedger才可以;
(2)可以利用RocketMQ原生存储复制能力,并统一RocketMQ的存储和复制能力;

RocketMQ 5.0对Broker选主相关的功能进行了抽离,放在Controller中,实现了在主从部署模式下就可以自动切换Master,Controller可以独立部署也可以嵌入在NameServer中部署。

独立部署下的Controller:

嵌入NameServer中的部署图如下:

Controller
也称为Controller控制器,一般集群中部署多个Controller,使用Raft算法选举出一个Active DLedger Controller作为主控制器,它主要用来管理一个SyncStateSet集合,
这个集合中存储的是一组跟上Master进度的Broker节点集合,如果Controller发现某个Master Broker下线时,会从集合中选出新的Master Broker并切换,Controller可以单独部署可以嵌在NameServer中部署。

SyncStateSet

SyncStateSet中维护了一个Broker副本组集合,包含当前Master Broker和它的Slave Broker,需要注意在集合内的节点都是跟上Master进度的节点,在节更变动时,由Master Broker向Controller控制器发起变更请求,更新Controller中的SyncStateSet数据,在选举Master的时候,Controller只需从这个列表中选出一个节点成为新的Master即可。

节点变更分为Shrink操作和Expand操作,需要Master Broker发起,它会通过定时任务以及在数据同步过程中判断是否需要进行Shrink或Expand。

Shrink
Shrink指的是将SyncStateSet副本集合中与Master节点差距过大的副本移除,差距的判断条件如下:

  1. 节点是否与Master Broker的连接已断,如果断开需要将该节点从SyncStateSet移除;
  2. 节点的复制进度是否过大,新增了haMaxTimeSlaveNotCatchup参数,Master Broker会通过定时任务扫描每一个Slave节点的复制信息,里面有每个节点上一次跟上Master进度的时间戳lastCaughtUpTimeMs,如果当前时间减去这个lastCaughtUpTimeMs超过了haMaxTimeSlaveNotCatchup的值,会认为该Slave节点的复制进度过后;
haMaxTimeSlaveNotCatchup:表示Slave没有跟上 Master 的最大时间间隔,若在 SyncStateSet 中的 slave 超过该时间间隔会将其从 SyncStateSet 移除。默认为 15000(15s)。

Expand
如果Master Broker发现某个Slave节点赶上了Master节点的进度,需要将其重新加入到SyncStateSet。

需要注意以上两个操作,都需要Master Broker向Controller节点发送通知,请求更新SyncStateSet中的数据。

选举Master

不管是Controller独立部署,还是嵌入到NameServer中部署,Controller都会监听每个Broker的连接,Broker会定期向Controller发送心跳包,Controller会定时扫描,如果某个Broker心跳包发送超时,会认为这个Broker已经失效,此时会判断Broker是否是Master角色,如果是Master角色就需要从该组的SyncStateSet中重新选出一个节点作为Master。

选举Master的方式比较简单,从该组的SyncStateSet中,挑选一个心跳包发送正常的Slave成为新的Master节点即可,并将结果通知到该组所有的Broker,每个Broker也会定时向Controller发送请求获取主备信息。

Broker端设计

主从架构部署模式下,需要配置brokerRole和brokerId,也就是手动分配Master和Slave,在Controller模式下,这两个参数会失效,不需要再进行配置,角色和ID由Controller来分配。

Controller模式下增加了controllerAddr参数,Broker在启动时,需要配置这个参数,设置每个controller的地址:

controllerAddr:controller的地址,多个controller中间用分号隔开。例如controllerAddr = 127.0.0.1:9877;127.0.0.1:9878;127.0.0.1:9879
Broker上线

Broker配置了每个Controller的地址,Broker启动时,会先向Controller注册,并获取角色关系和brokerId,通过角色关系可以知道自己是Master还是Slave,之后再向NameServer注册。

Broker可以通过任意一个Controller获取Active Controller节点的IP,后台也会有一个定时任务,定时更新Active Controller节点的IP。

主备关系确定

初始化时,第一个Broker在向Controller注册的时候,此时并没有该Broker组的SyncStateSet,所以Active Controller会将第一个向其发送请求共识的Broker设置为Master,之后该组的其他节点会设置为Slave,Master节点的brokerId为0,
Slave节点从1开始编号,往后递增。

由于Controller控制每个节点的角色,所以每个Broker也会定时向Controller发送请求获取主备信息,以便在角色发生变化的时候可以及时更新。

日志复制

  • MasterEpoch(Epoch):Master的任期号,与Term类似,每一任Master都会有一个对应的MasterEpoch任期号,这个任期号的值由Controller控制,单独递增;
  • StartOffset:每一任Master除了有一个任期号之外,还会取当选时对应CommitLog文件中最大的偏移量(MaxPhyOffset),作为本任期期间日志的起始偏移量,记作StartOffset;
  • EpochFile:用于存放每一任Master对应的日志起始偏移量(<MasterEpoch, StartOffset> 序列),存储在 ~/store文件夹下;

当Broker成为Master时,会进行如下操作:

  1. 获取当前CommitLog文件中最后一条消息的偏移量,也就是MaxPhyOffset的值,作为StartOffset;
  2. 将当前任期号MasterEpoch和起始偏移量StartOffset的值持久化到EpochFile文件中;
  3. 监听Slave节点的连接;
日志复制整体流程

Broker在接收Controller指令之后,会根据Controller的选举结果,转变对应的角色,分别为Master和Slave。

连接阶段
连接阶段用于Master节点与Slave节点间建立连接:

  1. Master节点开始监听连接;
  2. Slave节点请求与Master节点建立连接;

HandShake阶段
Master节点与Slave节点连接建立成功之后,进入HandShake阶段:

  1. Slave节点向Master节点发送HandShake包,里面包含一些状态信息及Slave的地址,数据格式如下:

    • Current State:表示当前状态,当前是HandShake阶段,所以表示HandShake;
    • Flags:一些标志位;
    • SlaveAddressLength:Salve节点的地址长度;
    • SlaveAddress:Slave节点的地址,发送给Master节点后,在下个阶段Master节点会判断是否需要将Slave节点加入到SyncStateSet中;
  2. Master节点向Slave节点回复HandShake包,Slave节点收到Master节点回复的包后,会使用本地的Epoch+StartOffset与Master传输的对比,找到截断点进行日志截断,与Master的日志保持一致,Master节点回复的HandShake包数据格式如下:

    • Current State:表示当前状态,当前是HandShake阶段;
    • Body Size:存储Body的长度;
    • Offset:表示当前Master节点的CommitLog最大偏移量;
    • Epoch:表示当前Master节点任期号;
    • Body:Master端记录的所有任期信息,是一个集合,所以总大小为EpochEntry大小 * EpochEntry条数;
日志截断
  • endOffset:下一任期的StartOffset,如果没有下一任期,那么取当前CommitLog的最大偏移量作为endOffset;

Slave中将每一任Epoch对应的<Startoffset,Endoffset>序列存储在一个TreeMap中(从大到小排序):

TreeMap<Epoch, Pair<startOffset,endOffset>> epochMap;

Slave节点会遍历所有的任期(从大到小),然后根据任期号Epoch获取Master节点对应的<startOffset,endOffset>序列进行对比,如果Slave的Epoch与Master一致,并且StartOffset相等,取两者中较小的那个endOffset作为截断位点,之后Slave节点修正自己的<epoch,startoffset>信息,然后进入Transfer阶段进行日志传输。如果未找到截断位点,会一直向后遍历直到找到。
Slave保证在截断位点位置之前的日志与Master一致,之后从截断位点位置开始从Master复制日志。

// Slave从大到小遍历所有的任期
while (iterator.hasNext()) {
    // 任期信息及对应的<startOffset,endOffset>
    Map.Entry<Epoch, Pair<startOffset,endOffset>> curEntry = iterator.next();
    // 根据Epoch任期号获取Master节点对应的<startOffset,endOffset>
    Pair<startOffset,endOffset> masterOffset=findMasterOffsetByEpoch(curEntry.getKey());
    // 如果获取不为空,并且startOffset相等
    if(masterOffset != null && 
            curEntry.getKey().getObejct1() == masterOffset.getObejct1()) {
        // 返回较小的那个endOffset
        truncateOffset = Math.min(curEntry.getKey().getObejct2(), masterOffset.getObejct2());
        break;
   }
}

Transfer阶段
在Transfer阶段,Master节点会不断向Slave发送日志包,开始进行日志复制:

  1. Master节点向Slave节点发送日志包;
  2. Slave节点收到日志包之后,会检测Epoch是否发生变化,然后更新本地的EpochFile,之后向Master节点回复ACK;
  3. Master节点处理Slave节点回复的ACK响应;

参考
RIP-44 Support DLedger Controller

RocketMQ设计思想

RocketMQ官方文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1122904.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

优雅的用户体验:微信小程序中的多步骤表单引导

前言 在微信小程序中&#xff0c;实现一个多步骤表单引导界面既可以提供清晰的任务指引&#xff0c;又可以增加用户体验的互动性。本文将探讨如何使用微信小程序的特性&#xff0c;构建一个流程引导界面&#xff0c;帮助用户一步步完成复杂任务。我们将从设计布局和样式开始&am…

彻底弄懂base64的编码与解码原理

背景 base64的编码原理网上讲解较多&#xff0c;但解码原理讲解较少&#xff0c;并且没有对其中的内部实现原理进行剖析。想要彻底了解base64的编码与解码原理&#xff0c;请耐心看完此文&#xff0c;你一定会有所收获。 涉及算法与逻辑运算概念 在探究base64编码原理和解码…

macrodata数据集在Python统计建模和计量经济学中的应用

目录 一、数据介绍二、应用三、statsmodels 统计模块四、使用 statsmodels 统计模块分析 macrodata.csv 数据集参考 一、数据介绍 macrodata.csv是一个示例数据集&#xff0c;通常用于统计分析和计量经济学中的教育和训练目的。这个数据集通常包括以下列&#xff1a; year&am…

17.3 实现无管道反向CMD

WSASocket无管道反向CMD&#xff0c;与无管道正向CMD相反&#xff0c;这种方式是在远程主机上创建一个TCP套接字&#xff0c;并绑定到一个本地地址和端口上。然后在本地主机上&#xff0c;使用WSASocket函数连接到远程主机的套接字&#xff0c;并将标准输入、输出和错误输出重定…

深入 Meven:构建杰出的软件项目的完美工具

掌握 Meven&#xff1a;构建更强大、更智能的应用程序的秘诀 Maven1.1 初识Maven1.1.1 什么是Maven1.1.2 Maven的作用 02. Maven概述2.1 Maven介绍2.2 Maven模型2.3 Maven仓库2.4 Maven安装2.4.1 下载2.4.2 安装步骤 03. IDEA集成Maven3.1 配置Maven环境3.1.1 当前工程设置3.1.…

JDBC相关记录

JDBC&#xff1a;Java DadaBase Connectivity 即Java语言连接数据库。 本质&#xff1a;JDBC是SUN公司制定的一套接口&#xff08;interface&#xff09;。 作用&#xff1a;不同的数据库有自己独特设计原理&#xff0c;JDBC的可以让Java程序员关注业务本身&#xff0c;而不需要…

Programming abstractions in C阅读笔记:p181-p183

《Programming Abstractions In C》学习第61天&#xff0c;p181-p183总结。 一、技术总结 1.linear search algorithm 2.lexicographic order(字典顺序) 3.binary search algorithm(二分查找算法) /** 1.二分查找也应用了递归的思想。* 2.这里的代码只是demo*/ #include &…

17.2 实现无管道正向CMD

WSASocket 无管道正向CMD&#xff0c;使用WSASocket函数创建一个TCP套接字&#xff0c;并绑定到一个本地地址和端口上。然后使用CreateProcess函数创建一个新的CMD进程&#xff0c;并将标准输入、输出和错误输出重定向到套接字的句柄上。这样&#xff0c;客户端可以通过网络连接…

应用开发平台集成工作流系列之16——办理意见设计与实现

背景 流程任务流转过程中&#xff0c;各环节的处理&#xff0c;会填写处理意见。 Camunda自带了相关的功能&#xff0c;但功能过于简陋&#xff0c;问题较多&#xff0c;今天来说说这一块。 自带功能的问题 如使用Camunda官方自身的办理意见相关功能&#xff0c;会遇到两个问…

【C++进阶(九)】C++多态深度剖析

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:C从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习C   &#x1f51d;&#x1f51d; 多态 1. 前言2. 多态的概念以及定义3. 多态的实…

Generator异步解决方案详解

一&#xff1a;三种常见的异步解决方案 Promise&#xff1a;链式编程async&#xff1a;使用 async 去修饰函数&#xff0c;然后使用 await 去等待成功Generator&#xff1a;使用 * 修饰函数&#xff0c;然后使用 yield 去等待成功 通俗来讲&#xff0c;Generator 类似于 Promi…

【Java 进阶篇】Java XML组成部分:理解XML的结构

XML&#xff08;可扩展标记语言&#xff09;是一种常用于存储和交换数据的标记语言。了解XML的结构和组成部分对于有效处理XML数据至关重要。在本篇博客中&#xff0c;我们将深入探讨XML的组成部分&#xff0c;以及如何使用Java来处理和操作XML数据。 什么是XML&#xff1f; …

预测宝可梦武力值、分类宝可梦

regression case 股票预测 无人车看到的各种sensor 影像镜头看到马路上的东西作为输入&#xff0c;输出就是方向盘角度等等的操纵策略 scalar 标量 这个是热力图&#xff0c;相当于你的XYZ但是Z用颜色表示了 closed-form solution 闭合解 learning rate事先定好的数值 在lin…

Vue中的v-for指令是用来做什么的?

在Vue中,v-for是一个用于渲染列表或集合的指令。它通过迭代数据源中的每个元素,生成对应的DOM节点或组件实例,并将它们渲染到页面上。 v-for指令的基本语法如下: <template><div><ul><li v-for="item in items" :key="item.id"…

基于ssm流浪动物领养救助系统

摘要 基于SSM&#xff08;Spring SpringMVC MyBatis&#xff09;的流浪动物领养救助系统是一个用于管理和帮助流浪动物领养、救助的信息化平台。该系统旨在提供一种便捷、高效的方式&#xff0c;以协调和改善流浪动物的生活&#xff0c;并促进社会各界的参与和支持。以下是该…

重生奇迹mu“荣誉之城”勇者大陆

曾经&#xff0c;不少重生奇迹mu玩家讨论最经典的新人出生地&#xff0c;有的说是仙踪林&#xff0c;有的则是说勇者大陆&#xff0c;最后在重生奇迹mu网站上面&#xff0c;以投票的方式最终得出一个答案&#xff0c;那就是勇者大陆&#xff0c;游戏里面当之无愧的荣誉之城&…

c语言程序设计——题目:将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。

题目&#xff1a;将一个正整数分解质因数。例如&#xff1a;输入90,打印出902*3*3*5。 程序分析&#xff1a;对n进行分解质因数&#xff0c;应先找到一个最小的质数k&#xff0c;然后按下述步骤完成 (1)如果这个质数恰等于&#xff08;小于的时候&#xff0c;继续执行循环&…

C#,数值计算——分类与推理Phylo_nj的计算方法与源程序

1 文本格式 using System; using System.Collections.Generic; namespace Legalsoft.Truffer { public class Phylo_nj : Phylagglom { public double[] u; public override void premin(double[,] d, int[] nextp) { i…

spring6-国际化:i18n | 数据校验:Validation

文章目录 1、国际化&#xff1a;i18n1.1、i18n概述1.2、Java国际化1.3、Spring6国际化1.3.1、MessageSource接口1.3.2、使用Spring6国际化 2、数据校验&#xff1a;Validation2.1、Spring Validation概述2.2、实验一&#xff1a;通过Validator接口实现2.3、实验二&#xff1a;B…

AI只需26秒,就可以设计一款会走路的机器人

由西北大学、麻省理工学院和佛蒙特大学组成的一支科研团队首次开发出一种可以完全自行设计机器人的 AI 算法。 这一 AI 算法不仅运行速度快&#xff0c;还可在个人计算机上运行&#xff0c;并从头开始设计全新的结构。只需告诉AI“我们想要一个可穿越陆地的机器人”&#xff0c…