官方预训练模型转换
- 下载yolov5-v6.0分支源码解压到本地,并配置基础运行环境。
- 下载官方预训练模型
- yolov5n.pt
- yolov5s.pt
- yolov5m.pt
- …
- 进入yolov5-6.0目录下,新建文件夹weights,并将步骤2中下载的权重文件放进去。
- 修改models/yolo.py文件
def forward(self, x):
z = [] # inference output
for i in range(self.nl):
x[i] = self.m[i](x[i]).sigmoid() # conv
# bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
# if not self.training: # inference
# if self.grid[i].shape[2:4] != x[i].shape[2:4] or self.onnx_dynamic:
# self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
# y = x[i].sigmoid()
# if self.inplace:
# y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
# y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
# else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
# xy = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
# wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
# y = torch.cat((xy, wh, y[..., 4:]), -1)
# z.append(y.view(bs, -1, self.no))
# return x if self.training else (torch.cat(z, 1), x)
return x[0], x[1], x[2]
- 新建export_rknn.py文件
import os
import torch
import onnx
from onnxsim import simplify
import onnxoptimizer
import argparse
from models.yolo import Detect, Model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./weights/yolov5n.pt', help='initial weights path')
#================================================================
opt = parser.parse_args()
print(opt)
#Save Only weights
ckpt = torch.load(opt.weights, map_location=torch.device('cpu'))
torch.save(ckpt['model'].state_dict(), opt.weights.replace(".pt", "-model.pt"))
#Load model without postprocessing
new_model = Model("./models/{}.yaml".format(os.path.basename(opt.weights).strip(".pt")))
new_model.load_state_dict(torch.load(opt.weights.replace(".pt", "-model.pt"), map_location=torch.device('cpu')), False)
new_model.eval()
#save to JIT script
example = torch.rand(1, 3, 640, 640)
traced_script_module = torch.jit.trace(new_model, example)
traced_script_module.save(opt.weights.replace(".pt", "-jit.pt"))
#save to onnx
f = opt.weights.replace(".pt", ".onnx")
torch.onnx.export(new_model, example, f, verbose=False, opset_version=12,
training=torch.onnx.TrainingMode.EVAL,
do_constant_folding=True,
input_names=['data'],
output_names=['out0','out1','out2'])
#onnxsim
model_simp, check = simplify(f)
assert check, "Simplified ONNX model could not be validated"
onnx.save(model_simp, opt.weights.replace(".pt", "-sim.onnx"))
#optimize onnx
passes = ["extract_constant_to_initializer", "eliminate_unused_initializer"]
optimized_model = onnxoptimizer.optimize(model_simp, passes)
onnx.checker.check_model(optimized_model)
onnx.save(optimized_model, opt.weights.replace(".pt", "-op.onnx"))
print('finished exporting onnx')
- 命令行执行python3 export_rknn.py脚本(默认为yolov5n.pt, 加–weights参数可指定权重),转换成功会输出一下信息, 转换后的模型存于权重同级目录(*-op.onnx后缀模型)
Namespace(weights='./weights/yolov5n.pt')
finished exporting onnx
RKNN开发板植入-模型转换篇
前期准备
- RKNN开发环境(python)
- rknn-toolkits2
详细流程
- 进入rknn-toolkits2/examples/onnx/yolov5示例目录下
- 修改test.py内容(按需修改ONNX_MODEL、RKNN_MODEL、IMG_PATH、DATASET等等超参数)
def sigmoid(x):
# return 1 / (1 + np.exp(-x))
return x
- 命令行执行
python3 test.py
即可获取推理结果
RKNN开发板植入-NPU加载推理篇(C++)
后续放出代码