多机器人三角形编队的实现

news2024/11/25 14:34:19

文章目录

  • 前言
  • 一、机器人编队前的准备
  • 二、配置仿真环境
    • 2.编写机器人编队.cpp文件
  • 三、三角形编队测试


前言

前阵子一直想要实现多机器人编队,找到了很多开源的编队代码,经过好几天的思索,终于实现了在gazebo环境中的TB3三角形机器人编队。


一、机器人编队前的准备

本次实现的多机器人三角形编队是在之前配置完成的单个TB3机器人基础上实现的,如果想要配置单个机器人可以参考这篇文章:双系统ubuntu20.04(neotic版本)从0实现Gazebo仿真slam建图

(1)创建工作空间:mkdir -p ~/catkin_ws/src
(2)把前面做好的单个机器人导航键图的功能包拷贝到src中。
可参考文章:ROS如何将拷贝的功能包成功运行在自己的工作空间中
(3)创建多机器人编队的功能包:

catkin_create_pkg turtlebot3_teams_wang roscpp rospy tf turtlesim

(4)新建广播以及接收广播的对应的.cpp文件

cd ~/catkin_ws/src/turtlebot3_teams_wang/src/
touch tb3_tf_broadcaster.cpp
touch tb3_tf_listener1.cpp
touch tb3_tf_listener2.cpp
touch tb3_tf_listener3.cpp
touch tb3_tf_listener4.cpp

(5)创建launch启动文件

cd ~/catkin_ws/src/turtlebot3_teams_wang/launch
touch turtlebot3_teams_follow_zhou.launch

二、配置仿真环境

(1)打开驱相应urdf.xacro模型(burger,waffle,waffle_pi都行)
本文选取waffle机器人模型
在这里插入图片描述
(2)插入以下代码增加话题订阅(订阅base_pose_ground_truth话题,gazebo可获取机器人相对与world的位置信息)

  <gazebo>
    <plugin name="base_waffle_controller" filename="libgazebo_ros_p3d.so">
      <alwaysOn>true</alwaysOn>
      <updateRate>50.0</updateRate>
      <bodyName>base_footprint</bodyName>
      <topicName>base_pose_ground_truth</topicName>
      <gaussianNoise>0.01</gaussianNoise>
      <frameName>world</frameName>
      <xyzOffsets>0 0 0</xyzOffsets>
      <rpyOffsets>0 0 0</rpyOffsets>
    </plugin>
  </gazebo>

在这里插入图片描述
(3)编写机器人gazebo仿真环境
打开turtlebot3_simulations->turtlebot3_gazebo根据自己设计需要设置launch文件,这里为方便演示,我在multi_turtlebot3.launch文件的基础上进行修改,这里我只添加了三个机器人。
在这里插入图片描述代码如下:

<launch>
  <arg name="model" default="$(env TURTLEBOT3_MODEL)" doc="model type [burger, waffle, waffle_pi]"/>
  <arg name="first_tb3"  default="tb3_0"/>
  <arg name="second_tb3" default="tb3_1"/>
  <arg name="third_tb3"  default="tb3_2"/>


  <arg name="first_tb3_x_pos" default=" 1.0"/>
  <arg name="first_tb3_y_pos" default=" 0.0"/>
  <arg name="first_tb3_z_pos" default=" 0.0"/>
  <arg name="first_tb3_yaw"   default=" 0.0"/>

  <arg name="second_tb3_x_pos" default=" 0.0"/>
  <arg name="second_tb3_y_pos" default="-1.0"/>
  <arg name="second_tb3_z_pos" default=" 0.0"/>
  <arg name="second_tb3_yaw"   default=" 0.0"/>

  <arg name="third_tb3_x_pos" default=" 0.0"/>
  <arg name="third_tb3_y_pos" default=" 1.0"/>
  <arg name="third_tb3_z_pos" default=" 0.0"/>
  <arg name="third_tb3_yaw"   default=" 0.0"/>
  

  <include file="$(find gazebo_ros)/launch/empty_world.launch">
    <arg name="world_name" value="$(find turtlebot3_gazebo)/worlds/empty.world"/>
    <arg name="paused" value="false"/>
    <arg name="use_sim_time" value="true"/>
    <arg name="gui" value="true"/>
    <arg name="headless" value="false"/>
    <arg name="debug" value="false"/>
  </include>  

  <group ns = "$(arg first_tb3)">
    <param name="robot_description" command="$(find xacro)/xacro --inorder $(find turtlebot3_description)/urdf/turtlebot3_$(arg model).urdf.xacro" />

    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen">
      <param name="publish_frequency" type="double" value="50.0" />
      <param name="tf_prefix" value="$(arg first_tb3)" />
    </node>
    
    <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-urdf -model $(arg first_tb3) -x $(arg first_tb3_x_pos) -y $(arg first_tb3_y_pos) -z $(arg first_tb3_z_pos) -Y $(arg first_tb3_yaw) -param robot_description" />
  </group>

  <group ns = "$(arg second_tb3)">
    <param name="robot_description" command="$(find xacro)/xacro --inorder $(find turtlebot3_description)/urdf/turtlebot3_$(arg model).urdf.xacro" />

    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen">
      <param name="publish_frequency" type="double" value="50.0" />
      <param name="tf_prefix" value="$(arg second_tb3)" />
    </node>

    <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-urdf -model $(arg second_tb3) -x $(arg second_tb3_x_pos) -y $(arg second_tb3_y_pos) -z $(arg second_tb3_z_pos) -Y $(arg second_tb3_yaw) -param robot_description" />
  </group>

  <group ns = "$(arg third_tb3)">
    <param name="robot_description" command="$(find xacro)/xacro --inorder $(find turtlebot3_description)/urdf/turtlebot3_$(arg model).urdf.xacro" />

    <node pkg="robot_state_publisher" type="robot_state_publisher" name="robot_state_publisher" output="screen">
      <param name="publish_frequency" type="double" value="50.0" />
      <param name="tf_prefix" value="$(arg third_tb3)" />
    </node>

    <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model" args="-urdf -model $(arg third_tb3) -x $(arg third_tb3_x_pos) -y $(arg third_tb3_y_pos) -z $(arg third_tb3_z_pos) -Y $(arg third_tb3_yaw) -param robot_description" />
  </group>

</launch>

(4)运行launch文件进行测试
运行结果如下:
在这里插入图片描述

2.编写机器人编队.cpp文件

(1)编写广播文件代码
tb3_tf_broadcaster1

cd ~/catkin_ws/src/turtlebot3_teams_wang/src/
gedit tb3_tf_broadcaster1.cpp

插入如下代码:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <turtlesim/Pose.h>
#include <nav_msgs/Odometry.h>
std::string turtle_name;
std::string robot_name;

void poseCallback(const nav_msgs::Odometry::ConstPtr& msg)
{
	// 创建tf的广播器
	static tf::TransformBroadcaster br;
	static tf::TransformBroadcaster br0;
	static tf::TransformBroadcaster br1;

	// 初始化tf数据
	tf::Transform transform;
	tf::Transform transform0;
	tf::Transform transform1;

	transform.setOrigin( tf::Vector3(msg->pose.pose.position.x, msg->pose.pose.position.y, 0.0) );
	double roll, pitch, yaw;
	tf::Quaternion q;
	tf::Quaternion quat;
	tf::quaternionMsgToTF(msg->pose.pose.orientation, quat);
  	tf::Matrix3x3(quat).getRPY(roll, pitch, yaw);
	q.setRPY(0.0, 0.0, yaw);
	transform.setRotation(q);
	// 广播world与海龟坐标系之间的tf数据
	br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", "tb3_0"));

	transform0.setOrigin( tf::Vector3((msg->pose.pose.position.x)-0.5, (msg->pose.pose.position.y)+1.0, 0.0) );//初始化  相距0.6m,xunizuobiao x,yzhi
	transform0.setRotation( tf::Quaternion(0, 0, 0, 1) );
	br0.sendTransform(tf::StampedTransform(transform0, ros::Time::now(), "world", "virtual_0"));
	transform1.setOrigin( tf::Vector3((msg->pose.pose.position.x)-0.5, (msg->pose.pose.position.y)-1.0, 0.0) );//初始化  相距0.6m,xunizuobiao x,yzhi
	transform1.setRotation( tf::Quaternion(0, 0, 0, 1) );
	br1.sendTransform(tf::StampedTransform(transform1, ros::Time::now(), "world", "virtual_1"));
}


int main(int argc, char** argv)
{
    // 初始化ROS节点
	ros::init(argc, argv, "my_tf_broadcaster");

	// 输入参数作为海龟的名字
	if (argc != 2)
	{
		ROS_ERROR("need turtle name as argument"); 
		return -1;
	}
	robot_name = argv[1];
	// 订阅海龟的位姿话题
	ros::NodeHandle node;
	ros::Subscriber sub = node.subscribe(robot_name+"/base_pose_ground_truth", 10, &poseCallback);
	//ros::Subscriber sub = node.subscribe(robot_name+"/odom", 10, &poseCallback);
    	// 循环等待回调函数
	ros::spin();
	return 0;
};

tb3_tf_broadcaster1与tb3_tf_broadcaster2

gedit tb3_tf_broadcaster2.cpp
gedit tb3_tf_broadcaster3.cpp

插入如下代码:

#include <ros/ros.h>
#include <tf/transform_broadcaster.h>
#include <turtlesim/Pose.h>
#include <nav_msgs/Odometry.h>
std::string turtle_name;
std::string robot_name;
void poseCallback(const nav_msgs::Odometry::ConstPtr& msg)
{
	// 创建tf的广播器
	static tf::TransformBroadcaster br;

	// 初始化tf数据
	tf::Transform transform;
	transform.setOrigin( tf::Vector3(msg->pose.pose.position.x, msg->pose.pose.position.y, 0.0) );
	double roll, pitch, yaw;
	tf::Quaternion q;
	tf::Quaternion quat;
	tf::quaternionMsgToTF(msg->pose.pose.orientation, quat);
  	tf::Matrix3x3(quat).getRPY(roll, pitch, yaw);
	q.setRPY(0.0, 0.0, yaw);
	transform.setRotation(q);

	// 广播world与海龟坐标系之间的tf数据
	br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", robot_name));
}

int main(int argc, char** argv)
{
    // 初始化ROS节点
	ros::init(argc, argv, "my_tf_broadcaster");

	// 输入参数作为海龟的名字
	if (argc != 2)
	{
		ROS_ERROR("need turtle name as argument"); 
		return -1;
	}
	robot_name = argv[1];
	// 订阅海龟的位姿话题
	ros::NodeHandle node;
	ros::Subscriber sub = node.subscribe(robot_name+"/base_pose_ground_truth", 10, &poseCallback);
	//ros::Subscriber sub = node.subscribe(robot_name+"/odom", 10, &poseCallback);
    	// 循环等待回调函数
	ros::spin();
	return 0;
};

(2)编写tf接收器文件代码
1、在对应路径下打开.cpp文件

cd ~/catkin_ws/src/turtlebot3_teams_wang/src/
gedit tb3_tf_listener1.cpp
gedit tb3_tf_listener2.cpp

tb3_tf_listener1.cpp插入如下代码:

#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <geometry_msgs/Twist.h>
#include <nav_msgs/Odometry.h>
//#include "sensor_msgs/LaserScan.h"

int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");

    // 创建节点句柄
	ros::NodeHandle node;

	// 请求产生turtle2
	//ros::service::waitForService("/spawn");
	//ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
	//turtlesim::Spawn srv;
	//add_turtle.call(srv);

	// 创建发布tb3_1速度控制指令的发布者
	ros::Publisher tb3_1_vel = node.advertise<geometry_msgs::Twist>("/tb3_1/cmd_vel", 10);

	// 创建tf的监听器
	tf::TransformListener listener;

	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transformfl;
		tf::StampedTransform transformlf;
		try
		{
		        listener.waitForTransform("/tb3_1", "/virtual_0", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/tb3_1", "/virtual_0", ros::Time(0), transformfl);
			
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}
		try#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <geometry_msgs/Twist.h>
#include <nav_msgs/Odometry.h>
//#include "sensor_msgs/LaserScan.h"

int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");

    // 创建节点句柄
	ros::NodeHandle node;

	// 请求产生turtle2
	//ros::service::waitForService("/spawn");
	//ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
	//turtlesim::Spawn srv;
	//add_turtle.call(srv);

	// 创建发布tb3_1速度控制指令的发布者
	ros::Publisher tb3_1_vel = node.advertise<geometry_msgs::Twist>("/tb3_1/cmd_vel", 10);

	// 创建tf的监听器
	tf::TransformListener listener;

	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transformfl;
		tf::StampedTransform transformlf;
		try
		{
		        listener.waitForTransform("/tb3_1", "/virtual_0", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/tb3_1", "/virtual_0", ros::Time(0), transformfl);
			
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}
		try
		{
		        listener.waitForTransform("/virtual_0", "/tb3_1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/virtual_0", "/tb3_1", ros::Time(0), transformlf);
			
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}

		// 根据tb3_0与tb3_1坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transformfl.getOrigin().y(),
				                        transformfl.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transformfl.getOrigin().x(), 2) +
				                      pow(transformfl.getOrigin().y(), 2));
		tb3_1_vel.publish(vel_msg);

		rate.sleep();
	}
	return 0;
};

		{
		        listener.waitForTransform("/virtual_0", "/tb3_1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/virtual_0", "/tb3_1", ros::Time(0), transformlf);
			
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}

		// 根据tb3_0与tb3_1坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transformfl.getOrigin().y(),
				                        transformfl.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transformfl.getOrigin().x(), 2) +
				                      pow(transformfl.getOrigin().y(), 2));
		tb3_1_vel.publish(vel_msg);

		rate.sleep();
	}
	return 0;
};

tb3_tf_listener2.cpp插入如下代码:

#include <ros/ros.h>
#include <tf/transform_listener.h>
#include <geometry_msgs/Twist.h>
#include <nav_msgs/Odometry.h>
//#include "sensor_msgs/LaserScan.h"

int main(int argc, char** argv)
{
	// 初始化ROS节点
	ros::init(argc, argv, "my_tf_listener");

    // 创建节点句柄
	ros::NodeHandle node;

	// 请求产生turtle2
	//ros::service::waitForService("/spawn");
	//ros::ServiceClient add_turtle = node.serviceClient<turtlesim::Spawn>("/spawn");
	//turtlesim::Spawn srv;
	//add_turtle.call(srv);

	// 创建发布tb3_1速度控制指令的发布者
	ros::Publisher tb3_2_vel = node.advertise<geometry_msgs::Twist>("/tb3_2/cmd_vel", 10);

	// 创建tf的监听器
	tf::TransformListener listener;

	ros::Rate rate(10.0);
	while (node.ok())
	{
		// 获取turtle1与turtle2坐标系之间的tf数据
		tf::StampedTransform transformfl;
		tf::StampedTransform transformlf;
		try
		{
		        listener.waitForTransform("/tb3_2", "/virtual_1", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/tb3_2", "/virtual_1", ros::Time(0), transformfl);
			
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}
		try
		{
		        listener.waitForTransform("/virtual_1", "/tb3_2", ros::Time(0), ros::Duration(3.0));
			listener.lookupTransform("/virtual_1", "/tb3_2", ros::Time(0), transformlf);
			
		}
		catch (tf::TransformException &ex) 
		{
			ROS_ERROR("%s",ex.what());
			ros::Duration(1.0).sleep();
			continue;
		}

		// 根据tb3_0与tb3_1坐标系之间的位置关系,发布turtle2的速度控制指令
		geometry_msgs::Twist vel_msg;
		vel_msg.angular.z = 4.0 * atan2(transformfl.getOrigin().y(),
				                        transformfl.getOrigin().x());
		vel_msg.linear.x = 0.5 * sqrt(pow(transformfl.getOrigin().x(), 2) +
				                      pow(transformfl.getOrigin().y(), 2));
		tb3_2_vel.publish(vel_msg);

		rate.sleep();
	}
	return 0;
};

(3)在对应路径下编辑launch文件

gedit turtlebot3_teams_follow_wang.launch

注意:和.cpp文件名对应
注意:args的名称需要和添加的小车机器人名称一一对应。
代码如下:

 <launch>
    <node pkg="turtlebot3_teams_zhou" type="tb3_tf_broadcaster1"
          args="/tb3_0" name="robot_0_tf_broadcaster" />
    <node pkg="turtlebot3_teams_zhou" type="tb3_tf_broadcaster2"
          args="/tb3_1" name="robot_1_tf_broadcaster" />
    <node pkg="turtlebot3_teams_zhou" type="tb3_tf_broadcaster3"
          args="/tb3_2" name="robot_2_tf_broadcaster" />

   
    <node pkg="turtlebot3_teams_zhou" type="tb3_tf_listener1"
          name="follower1" />
    <node pkg="turtlebot3_teams_zhou" type="tb3_tf_listener2"
          name="follower2" />

  </launch>

(4)编译工作环境
1、在turtlebot3_teams_wang的功能包下打开CMakeLists.txt文件,在Build中插入相应代码
注意:命令需要和.cpp文件名对应

add_executable(tb3_tf_broadcaster1 src/tb3_tf_broadcaster1.cpp)
target_link_libraries(tb3_tf_broadcaster1 ${catkin_LIBRARIES})

add_executable(tb3_tf_broadcaster2 src/tb3_tf_broadcaster2.cpp)
target_link_libraries(tb3_tf_broadcaster2 ${catkin_LIBRARIES})

add_executable(tb3_tf_broadcaster3 src/tb3_tf_broadcaster3.cpp)
target_link_libraries(tb3_tf_broadcaster3 ${catkin_LIBRARIES})

add_executable(tb3_tf_listener1 src/tb3_tf_listener1.cpp)
target_link_libraries(tb3_tf_listener1  ${catkin_LIBRARIES})

add_executable(tb3_tf_listener2 src/tb3_tf_listener2.cpp)
target_link_libraries(tb3_tf_listener2  ${catkin_LIBRARIES})

三、三角形编队测试

(1)在测试之前先编译下工作空间

cd ~/catkin_ws
catkin_make

(2)运行机器人仿真环境

roslaunch turtlebot3_gazebo multi_turtlebot3.launch

(3)启动编队程序

roslaunch turtlebot3_teams_zhou turtlebot3_teams_follow_wang.launch 

(4)控制tb3_0小车进行运动

ROS_NAMESPACE=tb3_0 rosrun turtlebot3_teleop turtlebot3_teleop_key

三角形编队

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1093257.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

prostate数据集下载

1. prostatex 下载地址&#xff1a;https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId23691656 比赛&#xff1a;https://prostatex.grand-challenge.org/ 这个下载的是一个tcia文件&#xff0c;参考这篇文章打开该文件 2. promise12 地址&#xff1a;…

阿里健康大药房七周年峰会:两大变革叠加 风往何处吹

10月11日&#xff0c;2023数字医药产业论坛暨阿里健康大药房7周年活动在杭州举行。 作为一年一度的医药圈峰会&#xff0c;大会现场集聚了数百家全球知名医药健康企业、经济学者、学术智库等各界领袖、专家&#xff0c;针对健康行业新趋势、新技术、新场景分享产业见解和经验&…

Redis HyperLogLog的使用

Redis HyperLogLog知识总结 一、简介二、使用 一、简介 Redis HyperLogLog是一种数据结构&#xff0c;用于高效地计算基数&#xff08;集合中唯一元素的数量&#xff09;。它的主要作用是用于在内存中高效地存储和计算大量数据的基数&#xff0c;而无需完全存储所有的数据。Hy…

XMind思维导图软件forMac/win:让你的大脑更高效地运转

XMind 是一款非常实用的思维导图软件&#xff0c;它可以帮助用户更好地组织思维、提高工作效率。 您是否曾经遇到过这样的问题&#xff1a;在工作中需要处理大量的信息、任务和项目&#xff0c;但却又不知道该如何下手&#xff1f;这种情况很常见&#xff0c;但是&#xff0c;…

简单好用的解压缩软件:keka 中文 for mac

Keka是一款功能全面、易于使用的文件压缩和解压缩软件&#xff0c;为Mac用户提供了便捷的文件管理工具。它支持多种压缩格式&#xff0c;具有快速解压和强大的压缩功能&#xff0c;让您能够轻松地处理各种文件压缩需求。 隐私非常重要 安全共享只需设置密码并创建高度加密的文…

虚幻引擎:如何实现骨骼重定向

前言&#xff1a; 为什么需要做骨骼重定向&#xff0c;因为当前角色素材没有对应的动画&#xff0c;这时候我们可以找个身高体型差不多的带有动画素材的另一个角色来做重定向&#xff0c;这样我们就可以得到我们需要的动画素材了。 1.首先创建两个骨骼的IK绑定 2.然后给两个骨骼…

Java Kids-百倍提速【Mac IOS】

引言&#xff1a;当今社会&#xff0c;创新和提升效率已经成为了大家普遍的追求。无论是个人生活还是企业经营&#xff0c;我们都希望能够以更高的效率完成任务&#xff0c;节省时间和资源。因此&#xff0c;提速成为了一种时代的要求&#xff0c;而"Java Kids 百倍提速&q…

Hadoop3教程(四):HDFS的读写流程及节点距离计算

文章目录 &#xff08;55&#xff09;HDFS 写数据流程&#xff08;56&#xff09; 节点距离计算&#xff08;57&#xff09;机架感知&#xff08;副本存储节点选择&#xff09;&#xff08;58&#xff09;HDFS 读数据流程参考文献 &#xff08;55&#xff09;HDFS 写数据流程 …

SpringBoot+原生HTML+MySQL开发的电子病历系统源码

电子病历系统源码 电子病历编辑器源码 云端SaaS服务 电子病历系统&#xff0c;采用 “所见即所得、一体化方式”&#xff0c;协助医生和护士准确、标准、快捷实现病历书写、修改、审阅、打印、体温单浏览、医嘱管理等&#xff0c;是提供病历快速简洁化完成的一系列综合型医生病…

MyCat分片水平拆分

场景 在业务系统中 , 有一张表 ( 日志表 ), 业务系统每天都会产生大量的日志数据 , 单台服务器的数据存 储及处理能力是有限的 , 可以对数据库表进行拆分。 准备 准备三台服务器&#xff0c;具体的结构如下&#xff1a; 并且&#xff0c;在三台数据库服务器中分表创建一…

启山智软/JAVA商城

一、项目介绍 启山网上商城采用目前流行的JAVA spring cloud架构开发&#xff0c;前端使用的是目前最流行的TypeScript、VUE3、uniapp、element-plus、pinia技术&#xff0c;后端采用的是JAVA、SpringBoot、spring cloud技术&#xff0c;数据库采用的是MSQ&#xff0c;采用前后…

C语言----程序环境

目录 前言: 1.翻译环境 1.1预编译(预处理) 1.2编译 1.3汇编 1.4链接 2.运行环境 前言: 我们在用vs或一些其他的编译器写代码的时候,当我们运行代码的时候,很自然而然的就出结果了,但是它究竟是如何是如何实现的呢?因为这部分的内容是涉及到"编译原理"的,所以本章…

读书笔记——C++高性能编程(六)

第六章.并发和性能 阿姆达尔定律 介绍了阿姆达尔定律&#xff08;Amdahls Law&#xff09;&#xff0c;这个定律的意义是“系统中对某一部件采用更快执行方式所能获得的系统性能改进程度&#xff0c;取决于这种执行方式被使用的频率”。具体的公式如下&#xff1a; 其中s0是程…

基于CodeFormer使用C++实现图片模糊变清晰,去除马赛克等效果

前言 CodeFormer是一种基于AI技术深度学习的人脸复原模型&#xff0c;由南洋理工大学和商汤科技联合研究中心联合开发。该模型通过结合了VQGAN和Transformer等技术&#xff0c;可以通过提供模糊或马赛克图像来生成清晰的原始图像。可以实现老照片修复、照片马赛克修复、黑白照…

深入浅出ThreadPoolExecutor(一)

文章目录 线程池简诉ThreadPoolExecutor详解ThreadPoolExecutor参数详解创建线程池的工具类Executors 线程池简诉 针对各种池子,比如 连接池:用于管理和重复使用数据库连接&#xff0c;避免频繁创建和销毁数据库连接带来的性能开销。对象池&#xff1a;用于管理和重复使用对象…

中国雪深长时间序列数据集(1979-2020)

简介 中国雪深长时间序列数据集&#xff08;1979-2020&#xff09;提供1979年1月1日到2020年12月31日逐日的中国范围的积雪厚度分布数据&#xff0c;其空间分辨率为25km&#xff0c;是“中国雪深长时间序列数据集&#xff08;1978-2012&#xff09;”的升级版本。前言 – 人工…

5.Python-使用XMLHttpRequest对象来发送Ajax请求

题记 使用XMLHttpRequest对象来发送Ajax请求&#xff0c;以下是一个简单的实例和操作过程。 安装flask模块 pip install flask 安装mysql.connector模块 pip install mysql-connector-python 编写app.py文件 app.py文件如下&#xff1a; from flask import Flask, reque…

Docker逃逸---授权 SYS_ADMIN Capability逃逸原理浅析

目录 一、产生原因 二、利用条件 三、复现过程 1、容器内挂载宿主机cgroup 2、设置notify_no_release并寻找容器在宿主机上的存储路径 3、将恶意脚本写入release_agent 一、产生原因 给容器额外授权了SYS_ADMIN Cap&#xff0c;并且容器以root权限运行&#xff0c;攻击者…

HUAWEI(26)——防火墙双机热备

一、拓扑 二、需求 PC2 ping PC1 FW1与FW2双机热备,FW1为active,FW2为Standby,抢占延时1s VRRP 三、配置 1.IP地址,防火墙接口加入区域 防火墙用户名:admin 防火墙旧密码:Admin@123 防火墙新密码:admin@123 [FW1]interface GigabitEthernet 1/0/0 [FW1-GigabitEthe…

【计算机毕业设计】python在线课程培训学习考试系统637r7-PyCharm项目

使用说明 使用Navicat或者其它工具&#xff0c;在mysql中创建对应名称的数据库&#xff0c;并导入项目的sql文件&#xff1b; 使用PyCharm 导入项目&#xff0c;修改配置&#xff0c;运行项目&#xff1b; 将项目中config.ini配置文件中的数据库配置改为自己的配置&#xff0c;…