电商API与电商数据经济的产生【电商平台-淘宝/京东/拼多多下的API数据经济】

news2025/1/16 1:59:10

计算机连接了互联网后,释放出了巨大的创新力和价值,同样地,智能合约一旦连接到快速增长的链下数据和API经济,也将变得无比强大。如果智能合约可以连接至链下数据提供商、web API、企业系统、云服务商、物联网设备、支付系统以及其他区块链等各种庞大的数据库,那么它将成为横跨各个行业的主流数字协议。本文中,我们将在以下几个方面深度解析数据和API:【以电子商务平台——淘宝/天猫/京东/拼多多/1688等电商平台API与数据经济数据分析为基础】

  • 数据是什么?它如何驱动数据经济?

  • 数据是如何被生产出来的?

  • 如何通过API交换数据?

  • 什么是大数据分析?

本文将全面分析链下数据经济格局,下一篇文章中我们会接着探讨如何使用一种叫“预言机”的基础架构安全可靠地将智能合约连接至这些链下数据。

数据与数据经济

▍数据

数据是通过观察得出的结果或信息,比如测量室外温度、计算汽车的地理位置或记录用户与应用的交互情况。原始数据本身既不具有特殊价值也不可靠,而是需要用其他数据对其进行解读或确认,以确保数据的真实性和有效性。

▍元数据

元数据是“关于数据的数据”。元数据中主要包含数据的基本信息,目的是大幅降低追踪和处理信息的难度。举个例子,某个消息的发送时间、某一温度数值的地理位置或某次电话沟通的时长,这些全都是元数据。其目的是为数据建立索引并赋予意义。

▍数据清洗

除此之外,重要的应用需要保障数据可靠性,因此需要对其进行处理和清洗。这个清洗过程包括去除异常值、发现错误并剔除不相关的信息。比如,将目前温度与历史温度进行比较,以甄别并剔除异常值。

▍数据经济

在数据经济中,各种类型的数据都会被搜集、提炼和交换,并产生有价值的洞察。这些洞察会产生最大的社会效益,比如在共享医疗数据库中储存临床研究数据,以便大家更好地了解最新医疗趋势;或私营企业追踪内部运营流程,以甄别并改善效率低下问题。

随着数据经济的不断发展,自动化程度也在不断上升。数据可以直接触发经济行为,而无须人为干预。举个例子,应用的算法规定只要满足三个条件,就会自动支付货款,这三个条件分别是:1)货物送达(GPS数据);2)货物品相完好(物联网数据);3)货物已清关(web API)。

▍数据生产

数据是某一流程或事件的副产品,数据的产生需要输入(即行为)、数据的记录需要提取(即测量)、而为数据赋予意义则需要聚合(即分析)。由于数据的输入、提取和聚合技术存在一定限制门槛,因此数据并不能做到“人人平等”,数据质量也是参差不齐的。

以下是获取新数据和原始数据的常见方式:

  • 表格(手动输入的数据):用户填写公开和私人表格(比如回答问卷调查、签署文档或在社交平台发言),手动输入的数据。

  • 应用/网站(经过用户同意的数据):在用户同意应用或网站的条款和协议后获取的数据。用户通常在同意这些条款和协议后,就会授权网站或应用追踪某些数据,比如APP中的操作、浏览习惯或甚至是性别和年龄等个人信息。

  • 物联网(实时监测的数据):安装了传感器和执行器的设备捕捉到的数据。并通过智能手机、智能家居、可穿戴式设备、射频识别装置等各种互联网设备传输数据。

  • 有流程/个人经验(由内部或个人拥有的数据):企业由于拥有专利或市场领导地位而掌控了某一业务流程,从而获取到的数据;抑或是在个人独特的经验中产生的数据。

  • 研究和分析(聚合并诠释数据):搜集来自现有数据集的数据,并对数据进行分析,包括与历史数据进行交叉对比、对其他数据集进行交叉参考以及采用新的过滤和计算方法等。另外还有数据分销商,他们从数据聚合商或企业大量收购数据,然后转卖给终端用户。数据分销商虽然以更高的价格将数据转卖出去,但是他们在转卖之前会按照用户的需求将数据处理成适合的结构或格式。

数据交换

如果数据要成为下一代应用的核心支柱,那么就不能完全依赖内部产生数据,而是必须建立一个数据交易机制,因为买数据的成本比生产数据的成本低多了。举个例子,开发自动驾驶汽车的算法需要运用大量数据进行目标检测、目标分类、目标定位以及运动预测。开发者可以在内部产生这些数据,但代价是需要累计几百万英里的驾驶里程;而他们也可以通过API购买这些数据。

应用程序编程接口(API)其实是一组命令,控制外部应用如何接入系统内部的数据集和服务。API是目前数据和服务交易的标准方案。主流的打车软件Uber连接了MapBox的GPS API进行车辆定位、Twilio的短信息API发送即时消息以及Braintree的支付API进行付款。这些功能都是购买的已有技术方案,而非Uber自己从零开发。

图片

(API经济自出现以来一直呈稳定上升趋势,自此期间产生了许多新的API和管理API的新方案。资料来源:Software Development Company Informatica)

API的收费模式通常是订阅模式,终端用户可以按使用次数付费,也可以按月付费,还可以按照某种阶梯制度付费。因此,数据提供商会得到经济激励生产数据,而终端用户无须自行生产这些数据。API提供方和付费用户之间还会签署具有法律效力的合约,以避免数据盗用或未经许可转卖等各种恶意行为,并约束数据提供商为自己的数据质量负责。

有许多API可免费供所有人使用,其中包括提供天气数据的Open Weather Map、提供航班信息的Skyscanner Flight Search以及提供全球人类行为和信仰数据的GDELT。除此之外,全世界各国政府也积极推出透明数据的倡议,并不断加大力度将API开源。然而,开源API的可靠性还是不如付费API,因为缺少经济激励和法律协议的约束,没法控制数据质量和延时风险。大多数优质数据仍然来自付费API,这些API通常拥有顶尖的数据源、全栈基础架构以及全职的监控团队,并为了超越竞争对手而不断努力创新。

大数据基础架构和分析

编程系统能够自主学习和自我完善,这个概念一直都受到热烈追捧。学习的过程包括采取行动、收到结果、与历史数据比对分析并产生新洞察,改进方法,最终实现目标。因此,目前的大趋势是开发出一个可以自主学习的基础架构,吸取大量数据、对数据进行过滤分类,并基于分析结果产生洞察。

美国的Facebook、Google和亚马逊以及中国的阿里巴巴、腾讯和百度之所以能成为今天的科技巨头,就是因为它们深耕互联网应用,并产生了海量的用户数据。这些数据为世界顶尖的数据分析工具,特别是人工智能和机器学习软件,奠定了坚实的基础。这些大数据分析技术能够针对消费者行为、社会趋势和市场趋势产生大量丰富的洞察。与此同时,业务管理软件也帮助企业更好地了解它们的运营情况。SAP、Salesforce和甲骨文等企业开发了企业资源规划系统(ERP)、客户关系管理系统(CRM)以及云端管理软件,使企业能够汇总内部业务流程中的所有数据和系统,并产生关键洞察。

云端计算和储存技术正受到越来越多的关注。有了云计算,用户可以共享云端基础架构储存和处理数据,从而无须占用自己的系统资源。云技术改善了应用的后端流程,增强了不同系统之间的共享,并降低了人工智能和机器学习软件的使用成本。举个例子,Google Cloud用户可以使用BigQuery,这是一个SaaS软件,可以批量分析千万亿字节的数据,并内置机器学习功能。

第四次工业革命即将到来

将人工智能/机器学习、业务管理软件以及云端基础架构相结合,能从数据中获得更加深刻的洞察。另外,边缘计算、5G通讯网络以及生物科技等技术的兴起也促进了实时数据和生物连接数据环境的发展。在这些新兴系统的推动下,经济体系不断朝着去人为干预和实时数据驱动决策的方向发展,而数据生成和分享的壁垒几乎消失,频率不断上升,这也进一步推动了大趋势的发展。许多人将这个大趋势称为“第四次工业革命”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/998399.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

高分三号1米分辨率飞机检测识别数据集

二、背景介绍 合成孔径雷达(Synthetic Aperture Radar, SAR) 是一种主动式的微波成像系统,它不受光照、云雾 和气候等自然条件影响,具备全天时、全天候对地 观测的能力,已成为遥感领域重要的信息获取平 台。近年来,随着遥感成像技…

Redis主从复制集群的介绍及搭建

在现代的软件开发中,数据的可靠性和可用性是至关重要的。Redis,作为一个开源的、内存中的数据结构存储系统,以其出色的性能和灵活的数据结构,赢得了开发者们的广泛喜爱。而 Redis 的主从复制功能,更是为我们提供了一种…

基于AHP模型指标权重分析python整理

一 背景介绍 日常会有很多定量分析的场景,然而也会有一些定性分析的场景针对定性分析的场景,预测者只能通过主观判断分析能力来推断事物的性质和发展趋势然而针对个人的直觉和虽然能够有一定的协助判断效果,但是很难量化到指标做后期的复用 …

Mybatis学习笔记2 增删改查及核心配置文件详解

Mybatis学习笔记1 Mybatis入门_biubiubiu0706的博客-CSDN博客 将Mybatis进行封装 SqlSessionUtil工具类 package com.example.util;import org.apache.ibatis.io.Resources; import org.apache.ibatis.session.SqlSession; import org.apache.ibatis.session.SqlSessionFacto…

modinfo对比内核版本号

加载内核&#xff0c;出现版本不一样 cat /proc/verison查看内核板本 模块版本&#xff1a;显示模块的版本号。 $ modinfo [OPTIONS] [MODULE] 参数说明-F, --field <field>: 指定要显示的字段&#xff0c;可以使用逗号分隔多个字段。-k, --kernel <kernel>: 指定…

第15章_瑞萨MCU零基础入门系列教程之Common I2C总线模块

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id728461040949 配套资料获取&#xff1a;https://renesas-docs.100ask.net 瑞萨MCU零基础入门系列教程汇总&#xff1a; ht…

香橙派使用外设驱动库wiringOP来驱动蜂鸣器

硬件接线 回顾香橙派的物理引脚对应&#xff1a; 所以将VCC接到1&#xff0c;GND接到6&#xff0c;I/O口接到7&#xff1a; 代码编写 香橙派的wiringOP库提供了很多的例程&#xff0c;可以将blink.c拷贝进自己的代码文件夹来修改&#xff1a; 小插曲---将手动对齐的Tab和自动对…

《向量数据库指南》——向量数据库和关系型数据库的区别?

向量数据库和关系型数据库是两种不同类型的数据库系统,它们在数据模型、数据存储、查询操作等方面存在许多区别。以下是向量数据库和关系型数据库的主要区别: 1、数据模型: 向量数据库:向量数据库专门设计用于存储和查询向量数据,这些数据通常表示为数值向量或嵌入向量。向…

精品基于NET实现的教育资源配置管理系统

《[含文档PPT源码等]精品基于NET实现的教育资源配置管理系统》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程等 软件开发环境及开发工具&#xff1a; 开发软件&#xff1a;VS 2017 &#xff08;版本2017以上即可&#xff0c;不能低于2017&#xff09…

50个渗透(黑客)常用名词及解释

目录 前言 一.渗透测试 二.网络安全 三.安全攻击 四.黑客工具 五.渗透方法 六.网络钓鱼 七.攻击技术 八.其他名词 总结 前言 网络安全是当今互联网时代不可忽视的重要议题。随着科技的发展&#xff0c;黑客渗透技术也日益复杂和潜在危险。为了加强对网络安全的认识&…

【无标题】C/C++内存管理

目录 一. C/C内存分布 二. C语言中动态内存管理方式 1.malloc/calloc/realloc和free 三. C内存管理方式 1.new/delete操作内置类型 2.new和delete操作自定义类型 四.malloc/free和new/delete的区别 五.内存泄漏 1.什么是内存泄漏&#xff0c;内存泄漏的危害 一. C…

makefile之伪目标PHONEY

当前目录有同makefile中同名的文件,make目标是不会执行的 clean:的依赖是空的,执行的规则条件没有满足. 伪目标是为了解决这个问题,在clean前面增加.PHONEY:clean include Makefile.config SRC : $(wildcard *.c wildcard audio_module/*.c) SRC_OBJ $(patsubst %.c,%.o,$(S…

SpringCloud简介 + Eureka注册发现中心

目录 1.SpringCloud简介 2. Eureka注册发现中心 2.1 Eureka简介 2.2 Eureka的处理机制 2.2.1 Register——服务注册 2.2.2 Renew——服务续约 2.2.3 Eviction——服务剔除 2.2.4 Cancle——服务下线 2.3 Eureka的配置文件 2.4 创建第一个Eureka项目 2.5 Eureka服务注…

C语言指针详解(2)------指针用法(概念+举例)非常详细易理解

C语言指针用法详解及举例 在学习用法之前&#xff0c;大家可以看看我上一节对指针的分类哦&#xff0c;这里我们在复习一下指针的概念&#xff1a; 1.指针就是个变量&#xff0c;用来存放地址&#xff0c;地址唯一标识一块内存空间。 2.指针的大小是固定的4/8个字节&#xff08…

Pytorch入门(6)—— 梯度计算控制

前文 PyTorch入门&#xff08;2&#xff09;—— 自动求梯度 介绍过 Pytorch 中的自动微分机制&#xff0c;这是实现神经网络反向传播的基础&#xff0c;也是所有深度学习框架最重要的基础设施之一梯度计算是需要占用计算资源的&#xff0c;而我们并不总是需要计算梯度&#xf…

锯片检测示例

1.锯片检测 1.1 应用示例目的与思路 (1) 提取并筛选锯齿的轮廓&#xff1b; (2) 对筛选后的锯齿轮廓进行直线拟合&#xff1b; (3) 统计正常锯齿的角度和缺陷锯齿的个数。 1.2 应用示例相关算子介绍 (1) threshold_sub_pix(Image : Border : Threshold : ) 功能&#xf…

应用开发平台集成工作流系列之10——流程建模功能环节业务逻辑处理的设计与实现

背景 基于工作流的表单流转&#xff0c;在某些特定的环节&#xff0c;需要执行一些业务逻辑处理。例如动态分配节点处理人、发送邮件或短信给待办用户、统计流程处理时长判断是否超时&#xff0c;以及业务层面数据处理&#xff08;例如&#xff0c;在请假流程中将部门领导审批…

Unity之Android项目的打包

一 Unity里面配置Android运行环境 1.1 首先unity需要集成android编译环境&#xff0c;点击FIle->Build Settings 1.2 没是否有Android模块&#xff0c;没的话先下载Android模块 1.3 按下面的操作&#xff0c;下载Android支持&#xff0c;SDK&#xff0c;NDK&#xff0c;和J…

15 - 多线程调优(上):哪些操作导致了上下文切换?

1、初识上下文切换 我们首先得明白&#xff0c;上下文切换到底是什么。 其实在单个处理器的时期&#xff0c;操作系统就能处理多线程并发任务。处理器给每个线程分配 CPU 时间片&#xff08;Time Slice&#xff09;&#xff0c;线程在分配获得的时间片内执行任务。 CPU 时间…

【图解RabbitMQ-6】说说交换机在RabbitMQ中的四种类型以及使用场景

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;CSDN实力新星&#xff0c;后端开发两年经验&#xff0c;曾担任甲方技术代表&#xff0c;业余独自创办智源恩创网络科技工作室。会点点Java相关技术栈、帆软报表、低代码平台快速开…