二、数据集基本情况
高分辨率SAR飞机检测识别数据集中所有图像采集自高分三号卫星,极化方式为单极化,空间分辨率为1m,成像模式为聚束式。数据集主要选用上海虹桥机场、北京首都机场和台湾桃园机场3个民用机场的影像数据,包含800×800、1000×1000、1200×1200和1500×1500共4种不同尺寸,共有4368张图片和16463个飞机目标实例。飞机的7个类别为:A220、A320/321、A330、ARJ21、Boeing737、 Boeing787和other,各个类别的实例以及数量如图1和图2所示,其中other表示不属于其余6个类别的飞机实例。
图1 不同类别SAR飞机和光学飞机样本示例图▼
图2 数据集各个类别的实例数量图▼
在实例的标注方面,高分辨率SAR飞机检测识别数据集中所有实例目标均使用水平矩形框进行标注,与Pascal VOC格式保持一致。
图3 数据集标注示意图▼
三、数据集的特点
高分辨率SAR飞机检测识别数据集有以下特点:
(1) 场景复杂:数据集包含多个民用机场不同时相的图像,这些图像覆盖面积大,背景中包含了航站楼、车辆、建筑物等设施,增加了数据集场景的复杂性。
(2) 类别丰富:不同于一般的SAR飞机数据集,SAR-AIRcraft-1.0数据集包含了飞机目标的细粒度类别信息。此外,不同类别之间相似的散射表征增加了飞机识别的难度。
(3) 目标密集:一张切片图像中包含多个飞机目标,多个飞机目标停靠在航站楼附近,分布较为密集,目标之间存在互相干扰,影响检测识别的准确率。
(4) 噪声干扰:由于SAR的成像特性,图像中存在着一些相干斑噪声的干扰,给飞机目标准确检测和识别带来一定的挑战。
(5) 任务多样:该数据集不仅支持检测任务,同时包含了类别信息,通过对数据集中飞机目标进行裁剪,得到多类别的目标切片,进而可以实现飞机的细粒度识别。此外,位置和类别信息的存在,使其可以应用在检测识别一体化任务中。
(6) 多尺度性:该数据集中飞机目标切片的尺寸分布跨度广。如图4所示,有一部分目标尺寸在50×50以下,也有一部分飞机目标尺寸在100×100以上,整体呈现出目标多尺度的特点。
图4 数据集飞机目标的尺寸分布图▼
四、数据集下载
高分三号1米分辨率飞机检测识别数据集可以登录:https://www.dilitanxianjia.com/11525/;文件夹内含有数据集3个压缩包,如下图所示。