15 - 多线程调优(上):哪些操作导致了上下文切换?

news2025/1/16 3:42:05

1、初识上下文切换

我们首先得明白,上下文切换到底是什么。

其实在单个处理器的时期,操作系统就能处理多线程并发任务。处理器给每个线程分配 CPU 时间片(Time Slice),线程在分配获得的时间片内执行任务。

CPU 时间片是 CPU 分配给每个线程执行的时间段,一般为几十毫秒。在这么短的时间内线程互相切换,我们根本感觉不到,所以看上去就好像是同时进行的一样。

时间片决定了一个线程可以连续占用处理器运行的时长。当一个线程的时间片用完了,或者因自身原因被迫暂停运行了,这个时候,另外一个线程(可以是同一个线程或者其它进程的线程)就会被操作系统选中,来占用处理器。这种一个线程被暂停剥夺使用权,另外一个线程被选中开始或者继续运行的过程就叫做上下文切换(Context Switch)。

具体来说,一个线程被剥夺处理器的使用权而被暂停运行,就是“切出”;一个线程被选中占用处理器开始或者继续运行,就是“切入”。在这种切出切入的过程中,操作系统需要保存和恢复相应的进度信息,这个进度信息就是“上下文”了。

那上下文都包括哪些内容呢?具体来说,它包括了寄存器的存储内容以及程序计数器存储的指令内容。CPU 寄存器负责存储已经、正在和将要执行的任务,程序计数器负责存储 CPU 正在执行的指令位置以及即将执行的下一条指令的位置。

在当前 CPU 数量远远不止一个的情况下,操作系统将 CPU 轮流分配给线程任务,此时的上下文切换就变得更加频繁了,并且存在跨 CPU 上下文切换,比起单核上下文切换,跨核切换更加昂贵。

2、多线程上下文切换诱因

在操作系统中,上下文切换的类型还可以分为进程间的上下文切换和线程间的上下文切换。而在多线程编程中,我们主要面对的就是线程间的上下文切换导致的性能问题,下面我们就重点看看究竟是什么原因导致了多线程的上下文切换。开始之前,先看下 Java 线程的生命周期状态。

结合图示可知,线程主要有“新建”(NEW)、“就绪”(RUNNABLE)、“运行”(RUNNING)、“阻塞”(BLOCKED)、“死亡”(DEAD)五种状态。

在这个运行过程中,线程由 RUNNABLE 转为非 RUNNABLE 的过程就是线程上下文切换。

一个线程的状态由 RUNNING 转为 BLOCKED ,再由 BLOCKED 转为 RUNNABLE ,然后再被调度器选中执行,这就是一个上下文切换的过程。

当一个线程从 RUNNING 状态转为 BLOCKED 状态时,我们称为一个线程的暂停,线程暂停被切出之后,操作系统会保存相应的上下文,以便这个线程稍后再次进入 RUNNABLE 状态时能够在之前执行进度的基础上继续执行。

当一个线程从 BLOCKED 状态进入到 RUNNABLE 状态时,我们称为一个线程的唤醒,此时线程将获取上次保存的上下文继续完成执行。

通过线程的运行状态以及状态间的相互切换,我们可以了解到,多线程的上下文切换实际上就是由多线程两个运行状态的互相切换导致的。

那么在线程运行时,线程状态由 RUNNING 转为 BLOCKED 或者由 BLOCKED 转为 RUNNABLE,这又是什么诱发的呢?

我们可以分两种情况来分析,一种是程序本身触发的切换,这种我们称为自发性上下文切换,另一种是由系统或者虚拟机诱发的非自发性上下文切换。

自发性上下文切换指线程由 Java 程序调用导致切出,在多线程编程中,执行调用以下方法或关键字,常常就会引发自发性上下文切换。

  • sleep()
  • wait()
  • yield()
  • join()
  • park()
  • synchronized
  • lock

非自发性上下文切换指线程由于调度器的原因被迫切出。常见的有:线程被分配的时间片用完,虚拟机垃圾回收导致或者执行优先级的问题导致。

这里重点说下“虚拟机垃圾回收为什么会导致上下文切换”。在 Java 虚拟机中,对象的内存都是由虚拟机中的堆分配的,在程序运行过程中,新的对象将不断被创建,如果旧的对象使用后不进行回收,堆内存将很快被耗尽。Java 虚拟机提供了一种回收机制,对创建后不再使用的对象进行回收,从而保证堆内存的可持续性分配。而这种垃圾回收机制的使用有可能会导致 stop-the-world 事件的发生,这其实就是一种线程暂停行为。

3、发现上下文切换

我们总说上下文切换会带来系统开销,那它带来的性能问题是不是真有这么糟糕呢?我们又该怎么去监测到上下文切换?上下文切换到底开销在哪些环节?接下来我将给出一段代码,来对比串联执行和并发执行的速度,然后一一解答这些问题。

public class DemoApplication {
       public static void main(String[] args) {
              // 运行多线程
              MultiThreadTester test1 = new MultiThreadTester();
              test1.Start();
              // 运行单线程
              SerialTester test2 = new SerialTester();
              test2.Start();
       }
       
       
       static class MultiThreadTester extends ThreadContextSwitchTester {
              @Override
              public void Start() {
                     long start = System.currentTimeMillis();
                     MyRunnable myRunnable1 = new MyRunnable();
                     Thread[] threads = new Thread[4];
                     // 创建多个线程
                     for (int i = 0; i < 4; i++) {
                           threads[i] = new Thread(myRunnable1);
                           threads[i].start();
                     }
                     for (int i = 0; i < 4; i++) {
                           try {
                                  // 等待一起运行完
                                  threads[i].join();
                           } catch (InterruptedException e) {
                                  // TODO Auto-generated catch block
                                  e.printStackTrace();
                           }
                     }
                     long end = System.currentTimeMillis();
                     System.out.println("multi thread exce time: " + (end - start) + "s");
                     System.out.println("counter: " + counter);
              }
              // 创建一个实现 Runnable 的类
              class MyRunnable implements Runnable {
                     public void run() {
                           while (counter < 100000000) {
                                  synchronized (this) {
                                         if(counter < 100000000) {
                                                increaseCounter();
                                         }
                                         
                                  }
                           }
                     }
              }
       }
       
      // 创建一个单线程
       static class SerialTester extends ThreadContextSwitchTester{
              @Override
              public void Start() {
                     long start = System.currentTimeMillis();
                     for (long i = 0; i < count; i++) {
                           increaseCounter();
                     }
                     long end = System.currentTimeMillis();
                     System.out.println("serial exec time: " + (end - start) + "s");
                     System.out.println("counter: " + counter);
              }
       }
 
       // 父类
       static abstract class ThreadContextSwitchTester {
              public static final int count = 100000000;
              public volatile int counter = 0;
              public int getCount() {
                     return this.counter;
              }
              public void increaseCounter() {
                     
                     this.counter += 1;
              }
              public abstract void Start();
       }
}

执行之后,看一下两者的时间测试结果:

通过数据对比我们可以看到:串联的执行速度比并发的执行速度要快。这就是因为线程的上下文切换导致了额外的开销,使用 Synchronized 锁关键字,导致了资源竞争,从而引起了上下文切换,但即使不使用 Synchronized 锁关键字,并发的执行速度也无法超越串联的执行速度,这是因为多线程同样存在着上下文切换。Redis、NodeJS 的设计就很好地体现了单线程串行的优势。

在 Linux 系统下,可以使用 Linux 内核提供的 vmstat 命令,来监视 Java 程序运行过程中系统的上下文切换频率,cs 如下图所示:

如果是监视某个应用的上下文切换,就可以使用 pidstat 命令监控指定进程的 Context Switch 上下文切换。

由于 Windows 没有像 vmstat 这样的工具,在 Windows 下,我们可以使用 Process Explorer,来查看程序执行时,线程间上下文切换的次数。

至于系统开销具体发生在切换过程中的哪些具体环节,总结如下:

  • 操作系统保存和恢复上下文;
  • 调度器进行线程调度;
  • 处理器高速缓存重新加载;
  • 上下文切换也可能导致整个高速缓存区被冲刷,从而带来时间开销。

4、总结

上下文切换就是一个工作的线程被另外一个线程暂停,另外一个线程占用了处理器开始执行任务的过程。系统和 Java 程序自发性以及非自发性的调用操作,就会导致上下文切换,从而带来系统开销。

线程越多,系统的运行速度不一定越快。那么我们平时在并发量比较大的情况下,什么时候用单线程,什么时候用多线程呢?

一般在单个逻辑比较简单,而且速度相对来非常快的情况下,我们可以使用单线程。例如,我们前面讲到的 Redis,从内存中快速读取值,不用考虑 I/O 瓶颈带来的阻塞问题。而在逻辑相对来说很复杂的场景,等待时间相对较长又或者是需要大量计算的场景,我建议使用多线程来提高系统的整体性能。例如,NIO 时期的文件读写操作、图像处理以及大数据分析等。

5、思考题

以上我们主要讨论的是多线程的上下文切换,前面我讲分类的时候还曾提到了进程间的上下文切换。那么你知道在多线程中使用 Synchronized 还会发生进程间的上下文切换吗?具体又会发生在哪些环节呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/998356.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【图解RabbitMQ-6】说说交换机在RabbitMQ中的四种类型以及使用场景

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;CSDN实力新星&#xff0c;后端开发两年经验&#xff0c;曾担任甲方技术代表&#xff0c;业余独自创办智源恩创网络科技工作室。会点点Java相关技术栈、帆软报表、低代码平台快速开…

自然语言处理: 第十二章LoRA解读

论文地址:[2106.09685] LoRA: Low-Rank Adaptation of Large Language Models (arxiv.org) 理论基础 自从GPT-3.5问世以来&#xff0c;整个AI界基本都走向了大模型时代&#xff0c;而这种拥有数亿参数的大模型对于普通玩家来说作全量微调基本是不可能的事。从而微软公司提出了…

指令延迟隐藏

一、指令延迟隐藏 1. 延迟和延迟隐藏 指令延迟指计算指令从调度到指令完成所需的时钟周期如果在每个时钟周期都有就绪的线程束可以被执行&#xff0c;此时GPU处于满符合状态指令延迟被GPU满负荷计算状态所掩盖的现象称为延迟隐藏延迟隐藏对GPU编程开发很重要&#xff0c;GPU设…

BeanFactory 和 FactoryBean傻傻分不清楚

&#x1f935;‍♂️ 个人主页&#xff1a;香菜的个人主页&#xff0c;加 ischongxin &#xff0c;备注csdn ✍&#x1f3fb;作者简介&#xff1a;csdn 认证博客专家&#xff0c;游戏开发领域优质创作者,华为云享专家&#xff0c;2021年度华为云年度十佳博主 &#x1f40b; 希望…

HTTPS双向认证

双向认证&#xff0c;指的是客户端和服务器端都需要验证对方的身份&#xff0c;在建立HTTPS连接的过程中&#xff0c;握手的流程相对于单向认证多了几步。 单向认证的过程&#xff0c;客户端从服务器端下载服务器端公钥证书进行验证&#xff0c;然后建立安全通信通道。 双向通信…

java的数据类型与变量(超详细每个都有小结论,习题巩固)

【本文章的目标】 1.字面常量 2.数据类型 3.变量 文章最后有习题等来帮助巩固&#xff0c;加深印象&#xff0c;相信看完这篇文章&#xff0c;大家会有收获 1.字面常量 在上节课HelloWorld程序中&#xff0c;System.Out,println(Hello World"); 语句&#xff0c;不论…

算法[动态规划]---买卖股票最佳时机

1、题目&#xff1a; 给你一个整数数组 prices&#xff0c;其中 prices[i] 表示某支股票第 i 天的价格。 在每一天&#xff0c;你可以决定是否购买和/或出售股票。你在任何时候最多只能持一股股票。你也可以先购买&#xff0c;然后在同一天出售。 返回你能获得的最大利润 。 2…

PLSQL

文章目录 基本pl/sql语法流程控制条件判断&#xff08;两种&#xff09;循环结构&#xff08;三种&#xff09;goto&#xff0c;exit关键字 游标的使用异常的处理存储过程&#xff08;无返回值&#xff09;&#xff0c;存储函数&#xff08;有返回值&#xff09;触发器 命令行窗…

苹果手机远程控制安卓手机,为什么不能发起控制?

这位用户想要用iOS设备远程控制安卓设备&#xff0c;在被控端安装好AirDroid之后&#xff0c;就在控制端的苹果手机上也安装了AirDroid&#xff0c;然而打开控制端的软件&#xff0c;却没有在手机界面上看到【远程控制】按钮&#xff0c;于是提出了以上疑问。 解答 想要让iOS设…

A,B,C , D, E类地址的划分及子网划分汇总的详解

一、 A类地址 &#xff08;1&#xff09;A类地址第1字节为网络地址&#xff0c;其它3个字节为主机地址。它的第1个字节的第一位固定为0. &#xff08;2&#xff09;A类地址范围&#xff1a;1.0.0.1—126.255.255.254 &#xff08;3&#xff09;A类地址中的私有地址和保留地…

苹果电脑快捷键集合

苹果电脑Windows系统下的ALT键是组合键。苹果电脑键盘左下角的Fnoption是Windows的alt键。同时按下两个键是ALT键的功能。在非组合状态下&#xff0c;单独按Option键。 补充&#xff1a; 1. 按controlalt&#xff08;选项&#xff09;delete 启动任务管理器。 2. Option-Del…

nrf52832 使用ADC点LED

#define SAMPLES_IN_BUFFER 5 volatile uint8_t state 1;/*** brief UART events handler.*/void saadc_callback(nrf_drv_saadc_evt_t const * p_event) { // }//saadc的初始化 void saadc_init(void) {ret_code_t err_code;nrf_saadc_channel_config_t channel_config NR…

C#,数值计算——柯西微分(Cauchy deviates)的计算方法与源代码

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// Cauchy deviates /// </summary> public class Cauchydev : Ran { private double mu { get; set; } private double sig { get; set; } public…

C++ -- 学习系列 static 关键字的使用

static 是 C 中常用的关键字&#xff0c;被 static 修饰的变量只会在 静态存储区&#xff08;常量数据也存放在这里&#xff09; 被分配一次内存&#xff0c;生命周期与整个程序一样&#xff0c;随着程序的消亡而消亡。 一 static 有以下几种用法&#xff1a; 1. 在文件中定义…

管理类联考——数学——汇总篇——知识点突破——应用题——交叉比例法/杠杆原理

读书笔记 甲有&#xff1a;x个a&#xff0c;乙有&#xff1a;y个b&#xff0c;甲乙的平均值为c&#xff0c;根据总数相等&#xff0c;得&#xff1a;axbyc(xy)&#xff0c;即ax-cxcy-by&#xff0c;则 x y c − b a − c \frac{x}{y}\frac{c-b}{a-c} yx​a−cc−b​ &#…

【Vue2.0源码学习】生命周期篇-初始化阶段(initState)

文章目录 1. 前言2. initState函数分析3. 初始化props3.1 规范化数据3.2 initProps函数分析3.3 validateProp函数分析3.4 getPropDefaultValue函数分析3.5 assertProp函数分析 4. 初始化methods5. 初始化data6. 初始化computed6.1 回顾用法6.2 initComputed函数分析6.3 defineC…

rv1126之isp黑电平(BLC)校准!

前言&#xff1a; 大家好&#xff0c;今天我们继续来讲解isp第二期内容&#xff0c;这期内容主要分三个部分&#xff1a; 1、tunning的工作流程 2、利用RKISP2.x_Tuner来创建tunning工程&#xff0c;并连接上rv1126开发板进行抓图 3、BLC(黑电平校准)的原理和校准方法以及实战…

UE4(Unreal Engine 4)运行setup.bat发生403报错的问题

最近UE官方在迁移服务器&#xff0c;有些D:\UE4\Engine\Build\Commit.gitdeps.xml文件需要更新。此时需要你去往UE对应的版本下载新的Commit.gitdeps.xml文件&#xff0c;并且覆盖原有的Commit.gitdeps.xml文件。UE的官方说明 覆盖前 覆盖后

Tomcat多实例与负载均衡

Tomcat多实例与负载均衡 一、Tomcat多实例1.1、安装JDK1.2、安装tomcat1.3、配置tomcat环境变量1.4、修改tomcat中的主配置文件1.5、修改启动脚本和关闭脚本1.6、 启动tomcat并查看 二、NginxTomcat负载均衡、动静分离2.1、部署Nginx负载均衡2.2、部署第一台tomcat2.3、部署第二…

Windows系统远程桌面连接CentOS7

1. 安装 GNOME 桌面环境&#xff08;如果尚未安装&#xff09; yum groupinstall "GNOME Desktop" 2. 安装 VNC Server yum install tigervnc-server 设置 vnc 账号密码 vncpasswd root root 是账号&#xff0c;接下会提示两次输入密码 3. 安装 xrdp 检查cento…