机器学习笔记之最优化理论与方法(十)无约束优化问题——共轭梯度法背景介绍

news2025/1/20 12:01:56

机器学习笔记之最优化理论与方法——共轭梯度法背景介绍

  • 引言
    • 背景:共轭梯度法
    • 线性共轭梯度法
      • 共轭方向
      • 共轭VS正交
      • 共轭方向法
      • 共轭方向法的几何解释

引言

本节将介绍共轭梯度法,并重点介绍共轭方向法的逻辑与几何意义。

背景:共轭梯度法

关于最小化二次目标函数: min ⁡ f ( x ) = min ⁡ 1 2 x T Q x + C T x \begin{aligned}\min f(x) = \min \frac{1}{2} x^T \mathcal Q x + \mathcal C^T x\end{aligned} minf(x)=min21xTQx+CTx,其中 Q ∈ R n × n ; Q ≻ 0 \mathcal Q \in \mathbb R^{n \times n};\mathcal Q \succ 0 QRn×n;Q0,且 C ∈ R n \mathcal C \in \mathbb R^n CRn。很明显:由于 Q \mathcal Q Q正定矩阵,那么该函数是凸二次函数

关于该函数的最优解:令 ∇ f ( x ) ≜ 0 \nabla f(x) \triangleq 0 f(x)0,有:
凸函数的局部最优解(极值点)也是它的全局最优解
∇ f ( x ) = Q x + C ≜ 0 \nabla f(x) = \mathcal Q x + \mathcal C \triangleq 0 f(x)=Qx+C0
可以看出: Q x + C = 0 \mathcal Q x + \mathcal C = 0 Qx+C=0是一个包含 n n n个方程的线性方程组

  • 如果 n n n的规模较小时,关于解方程组,可以使用其他工具进行解决。例如:高斯消去法
  • 相反,当 n n n的规模较大时,对应的增广矩阵规模同样很大,使用高斯消去法解方程组的成本较高

共轭梯度法初始就是针对方程组的一种迭代求解方法。随着最优化问题的推广,关于目标函数 f ( x ) f(x) f(x)也不仅仅局限在二次函数。对于这类 min ⁡ f ( x ) \min f(x) minf(x)的方法也被称作非线性共轭梯度法
对于上述方程组问题的迭代求解方法也被称作线性共轭梯度法

线性共轭梯度法

关于上述优化问题: min ⁡ f ( x ) = 1 2 x T Q x + C T x ; Q ≻ 0 \begin{aligned}\min f(x) = \frac{1}{2} x^T \mathcal Q x + \mathcal C^T x;\mathcal Q \succ 0\end{aligned} minf(x)=21xTQx+CTx;Q0

  • 假设正定矩阵 Q \mathcal Q Q是一个对角矩阵 B = ( b 1 b 2 ⋱ b n ) n × n \mathcal B = \begin{pmatrix} b_1 & \quad & \quad & \quad \\ \quad & b_2 & \quad & \quad\\ \quad & \quad & \ddots & \quad \\ \quad & \quad & \quad & b_n \end{pmatrix}_{n \times n} B= b1b2bn n×n,那么此时可以发现: f ( x ) = 1 2 x T B x + C T x \begin{aligned}f(x) = \frac{1}{2}x^T \mathcal B x + \mathcal C^T x \end{aligned} f(x)=21xTBx+CTx的二次项部分仅包含 x x x内各分量的平方项,而不包含各分量的交叉项
    n = 2 n=2 n=2为例,对应目标函数图像以及在 x 1 , x 2 x_1,x_2 x1,x2方向上的投影(等值线)示例如下。
    目标函数图像以及投影图像
    很明显,可以看出:描述等值线的椭圆,其长轴与短轴分别与坐标轴平行。如果通过迭代的方式进行求解,可以根据无约束优化问题——常用求解方法(上)中介绍的坐标轴交替下降法进行求解。图像表示如下:
    由于更新方向被确定——与坐标轴方向平行。因此仅需要计算各维度达到最小步长即可。因而仅需要 2 2 2步就可以找到最优解。
    坐标轴交替下降法示例
    同理,如果是 x ∈ R n x \in \mathbb R^n xRn,需要将所有的轴均迭代一遍即可找到最优解。
  • 如果 Q \mathcal Q Q是一个一般形式的正定矩阵: Q = ( q 11 q 12 ⋯ q 1 n q 21 q 22 ⋯ q 2 n ⋮ ⋮ ⋱ ⋮ q n 1 q n 2 ⋯ q n n ) n × n ; Q ≻ 0 \mathcal Q = \begin{pmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{pmatrix}_{n \times n};\mathcal Q \succ 0 Q= q11q21qn1q12q22qn2q1nq2nqnn n×n;Q0。这里依然以 n = 2 n=2 n=2为例,对应的目标函数 f ( x ) f(x) f(x)决策变量 x x x各分量的等值线示例如下:
    由于交叉项 q m n ( m ≠ n ) q_{mn}(m \neq n) qmn(m=n)的存在,对应椭圆图像的长轴与短轴不再与坐标轴平行。
    等值线图像示例
    针对这种一般情况二次型函数 min ⁡ f ( x ) = 1 2 x T Q x + C T x \begin{aligned}\min f(x) = \frac{1}{2} x^T \mathcal Q x + \mathcal C^T x\end{aligned} minf(x)=21xTQx+CTx,可以通过二次型的线性替换,从而将函数转化为标准型函数:
    其中 D \mathcal D D是由 Q \mathcal Q Q特征值组成的对角阵;而 P \mathcal P P则表示由特征值对应特征向量组成的正交阵
    Q = P T D P D = ( λ 1 λ 2 ⋱ λ n ) n × n \mathcal Q = \mathcal P^T \mathcal D \mathcal P \quad \mathcal D = \begin{pmatrix} \lambda_1 & \quad & \quad & \\ \quad & \lambda_2 &\quad & \\ \quad & \quad & \ddots & \\ \quad & \quad & \quad & \lambda_n \end{pmatrix}_{n \times n} Q=PTDPD= λ1λ2λn n×n
    替换后的函数 f ( x ) f(x) f(x)可表示为:
    x ^ = P x \hat {x} = \mathcal P x x^=Px反之 x = P T x ^ x = \mathcal P^T \hat x x=PTx^
    f ( x ) = 1 2 x T Q x + C T x = 1 2 x T P T D P x + C T x = 1 2 ( P x ) T D ( P x ) + C T x = 1 2 [ x ^ ] T D x ^ + C T ( P T x ^ ) = 1 2 [ x ^ ] T D x ^ + ( P C ) T x ^ = f ^ ( x ^ ) \begin{aligned} f(x) & = \frac{1}{2} x^T \mathcal Q x + \mathcal C^T x \\ & = \frac{1}{2} x^T \mathcal P^T \mathcal D \mathcal P x + \mathcal C^T x \\ & = \frac{1}{2}(\mathcal P x)^T \mathcal D (\mathcal P x) + \mathcal C^T x \\ & = \frac{1}{2} [\hat x]^T \mathcal D \hat {x} +\mathcal C^T (\mathcal P^T \hat x )\\ & = \frac{1}{2} [\hat x]^T \mathcal D \hat {x} + (\mathcal P \mathcal C)^T \hat x \\ & = \hat {f}(\hat x) \end{aligned} f(x)=21xTQx+CTx=21xTPTDPx+CTx=21(Px)TD(Px)+CTx=21[x^]TDx^+CT(PTx^)=21[x^]TDx^+(PC)Tx^=f^(x^)
    此时,该公式又变回第一类标准型。同样可以通过坐标轴交替下降法新目标函数 f ^ ( x ^ ) \hat f(\hat x) f^(x^)进行求解。如果找到了关于 x ^ \hat x x^的最优解,可以通过 x = P T x ^ x = \mathcal P^T \hat x x=PTx^找到 x x x的最优解。

线性共轭梯度法是用来针对线性方程组 ∇ f ( x ) = Q x + C ≜ 0 \nabla f(x) = \mathcal Q x + \mathcal C \triangleq 0 f(x)=Qx+C0的求解问题。如果针对上述逻辑,必然需要先将正交矩阵 P \mathcal P P求解出来。但相反,由于 P \mathcal P P是由特征值对应特征向量组成的正交矩阵,而求解特征向量依然要解方程组 Q x + C ≜ 0 \mathcal Q x + \mathcal C \triangleq 0 Qx+C0
很明显,这形成了一个闭环:想要通过 P \mathcal P P求解方程组,而 P \mathcal P P自身也要通过求解方程组来获取。

共轭梯度法的思路是:想要通过获取一系列的 n n n向量 d 0 , d 1 , ⋯   , d n − 1 ∈ R n d_0,d_1,\cdots,d_{n-1} \in \mathbb R^n d0,d1,,dn1Rn,其组成的矩阵 S = ( d 0 , d 1 , ⋯   , d n − 1 ) n × n \mathcal S = (d_0,d_1,\cdots,d_{n-1})_{n \times n} S=(d0,d1,,dn1)n×n,使其替代上面描述的正交矩阵 P n × n \mathcal P_{n \times n} Pn×n,从而帮助 Q \mathcal Q Q完成对角化
Q = S T D S \mathcal Q = \mathcal S^T \mathcal D \mathcal S Q=STDS
从而通过上述思路,求解最优解: x = S T x ^ x = \mathcal S^T \hat {x} x=STx^

关于向量组 d 0 , d 1 , ⋯   , d n − 1 d_0,d_1,\cdots,d_{n-1} d0,d1,,dn1,向量之间的关系被定义为共轭关系

共轭方向

共轭方向的定义表示为:考虑正定矩阵 Q \mathcal Q Q以及非零向量 d i , d j ( i ≠ j ) d_i,d_j(i \neq j) di,dj(i=j),若满足:
( d i ) T Q d j = 0 (d_i)^T \mathcal Q d_j = 0 (di)TQdj=0
则称向量 d i , d j d_i,d_j di,dj关于矩阵 Q \mathcal Q Q共轭。如果向量组 D = { d 0 , d 1 , ⋯   , d k } \mathcal D = \{d_0,d_1,\cdots,d_k\} D={d0,d1,,dk}关于矩阵 Q \mathcal Q Q共轭,即向量之间两两共轭
∀ d i , d j ∈ D ; i ≠ j ⇒ ( d i ) T Q d j = 0 \forall d_i,d_j \in \mathcal D;i \neq j \Rightarrow (d_i)^T \mathcal Q d_j = 0 di,djD;i=j(di)TQdj=0

共轭VS正交

根据上述共轭梯度法的思路,以及共轭方向定义的描述,观察:共轭与正交之间的关系

  • 如果向量组 D { d 0 , d 1 , ⋯   , d k } \mathcal D \{d_0,d_1,\cdots,d_k\} D{d0,d1,,dk}关于单位矩阵 I \mathcal I I共轭:此时向量 d i , d j ∈ D d_i,d_j \in \mathcal D di,djD之间的共轭关系退化为正交关系
    ∀ d i , d j ∈ D , i ≠ j ( d i ) T I d j = 0 ⇒ ( d i ) T d j = 0 \forall d_i,d_j \in \mathcal D,i \neq j \quad (d_i)^T \mathcal Id_j = 0 \Rightarrow (d_i)^T d_j = 0 di,djD,i=j(di)TIdj=0(di)Tdj=0

  • 如果向量组 D { d 0 , d 1 , ⋯   , d k } \mathcal D \{d_0,d_1,\cdots,d_k\} D{d0,d1,,dk}关于正定矩阵 Q \mathcal Q Q共轭:令 Q = M T Λ M \mathcal Q = \mathcal M^T \Lambda \mathcal M Q=MTΛM,并令 Λ = λ 2 \Lambda = \lambda^2 Λ=λ2,有:

    • 由于 M \mathcal M M是正交矩阵: M M T = I \mathcal M \mathcal M^T = \mathcal I MMT=I,因而可以在展开过程中插入一个 M M T \mathcal M \mathcal M^T MMT
    • P = M T λ M \mathcal P = \mathcal M^T \lambda \mathcal M P=MTλM
      Q = M T Λ M = M T λ 2 M = ( M T λ M ) ( M T λ M ) = ( M T λ M ) 2 = P 2 \begin{aligned} \mathcal Q & = \mathcal M^T \Lambda \mathcal M \\ & = \mathcal M^T \lambda^2 \mathcal M \\ & = (\mathcal M^T\lambda \mathcal M) (\mathcal M^T \lambda \mathcal M) \\ & = (\mathcal M^T \lambda \mathcal M)^2 \\ & = \mathcal P^2 \end{aligned} Q=MTΛM=MTλ2M=(MTλM)(MTλM)=(MTλM)2=P2

    从而将 Q \mathcal Q Q分解成 P 2 \mathcal P^2 P2的形式。并且 P = M T λ M \mathcal P = \mathcal M^T \lambda \mathcal M P=MTλM也是一个正定矩阵 P 2 = P ⋅ P = P T P \mathcal P^2 = \mathcal P \cdot \mathcal P = \mathcal P^T \mathcal P P2=PP=PTP
    关于向量 d i , d j d_i,d_j di,dj共轭: ( d i ) T Q d j = 0 (d_i)^T \mathcal Q d_j = 0 (di)TQdj=0可表示为:
    ( d i ) T Q d j = ( d i ) T P 2 d j = ( d i ) T P T P d j = ( P d i ) T ( P d j ) = 0 \begin{aligned} (d_i)^T \mathcal Q d_j & = (d_i)^T \mathcal P^2 d_j \\ & = (d_i)^T \mathcal P^T \mathcal P d_j \\ & = (\mathcal P d_i)^T (\mathcal P d_j) = 0 \end{aligned} (di)TQdj=(di)TP2dj=(di)TPTPdj=(Pdi)T(Pdj)=0
    也就是说:向量 d i , d j d_i,d_j di,dj经过正交矩阵 P \mathcal P P的投影结果: P d i , P d j \mathcal Pd_i,\mathcal Pd_j Pdi,Pdj之间是正交关系
    关于向量投影的描述详见主成分分析(最大投影方差)

  • 根据正交的性质,两两正交的向量组,其内部向量必然线性无关两两共轭的向量组,其内部向量同样线性无关。由于决策变量 x ∈ R n x \in \mathbb R^n xRn,因而对应的两两共轭向量组内最多包含 n n n两两共轭的向量。
    再多一个,必然出现向量之间不共轭的情况。

共轭方向法

依然针对凸二次函数的优化问题: min ⁡ f ( x ) = 1 2 x T Q x + C T x , Q ≻ 0 \begin{aligned}\min f(x) = \frac{1}{2} x^T \mathcal Q x + \mathcal C^T x,\mathcal Q \succ 0 \end{aligned} minf(x)=21xTQx+CTx,Q0,通过迭代的方式求解 x x x最优解

  • 给定:初始点 x 0 x_0 x0以及一组关于 Q \mathcal Q Q的共轭方向 d 0 , d 1 , ⋯   , d n − 1 d_0,d_1,\cdots,d_{n-1} d0,d1,,dn1,令:
    坐标轴交替下降法的思路如出一辙,只不过方向选择由原来两两正交的坐标轴作为方向替换为两两共轭的向量作为方向
    x k + 1 = x k + α k ⋅ d k x_{k+1} = x_k + \alpha_k \cdot d_k xk+1=xk+αkdk
  • 其中 α k \alpha_k αk满足:
    即当前迭代步骤的最优解,之所以选择最优解,因为该函数是凸函数,对应的最优解必然是全局最优解。
    α k = arg ⁡ min ⁡ α ϕ ( α ) = arg ⁡ min ⁡ α f ( x k + α ⋅ d k ) \alpha_k = \mathop{\arg\min}\limits_{\alpha} \phi(\alpha) = \mathop{\arg\min}\limits_{\alpha} f(x_k + \alpha \cdot d_k) αk=αargminϕ(α)=αargminf(xk+αdk)
    计算 ∇ ϕ ( α k ) ≜ 0 \nabla \phi(\alpha_k) \triangleq 0 ϕ(αk)0,有:
    ∇ ϕ ( α k ) = f ( x k + α k ⋅ d k ) T d k = [ Q ( x k + α k ⋅ d k ) + C ] T d k = ( Q x k + C ) T d k + α k ( x k ) T Q d k ≜ 0 \begin{aligned} \nabla \phi(\alpha_k) & = f(x_k + \alpha_k \cdot d_k)^T d_k \\ & = [\mathcal Q(x_k + \alpha_k \cdot d_k) + \mathcal C]^T d_k \\ & = (\mathcal Q x_k + \mathcal C)^T d_k + \alpha_k (x_k)^T \mathcal Q d_k \triangleq 0 \\ \end{aligned} ϕ(αk)=f(xk+αkdk)Tdk=[Q(xk+αkdk)+C]Tdk=(Qxk+C)Tdk+αk(xk)TQdk0
    最终有:
    α k = − ( Q x k + C ) T d k ( d k ) T Q d k = − [ ∇ f ( x k ) ] T d k ( d k ) T Q d k \alpha_k = -\frac{(\mathcal Q x_k + \mathcal C)^T d_k}{(d_k)^T \mathcal Q d_k} = -\frac{[\nabla f(x_k)]^T d_k}{(d_k)^T \mathcal Q d_k} αk=(dk)TQdk(Qxk+C)Tdk=(dk)TQdk[f(xk)]Tdk

整个的算法过程并不麻烦,但需要一个前提:将共轭方向 d 0 , d 1 , ⋯   , d n − 1 d_0,d_1,\cdots,d_{n-1} d0,d1,,dn1提前给出。因而不同共轭方向的选择方式对应其相应的共轭方向法。
与牛顿法的描述相似:针对 Hessian Matrix \text{Hessian Matrix} Hessian Matrix可能不是正定矩阵的一类情况,分为修正法, SR-1,DFP,BFGS \text{SR-1,DFP,BFGS} SR-1,DFP,BFGS等等方法;同理,共轭方向法为一类方法,而共轭梯度法只是其中一种方法。

共轭方向法的几何解释

观察关于初始点 x 0 x_0 x0第一次迭代 x 0 ⇒ x 1 x_0 \Rightarrow x_1 x0x1
x 1 = x 0 + ∑ i = 0 n − 1 α i ⋅ d i x_1 = x_0 + \sum_{i=0}^{n-1} \alpha_i \cdot d_i x1=x0+i=0n1αidi
如果将 n n n共轭方向组成矩阵,记作 S = ( d 0 , d 1 , ⋯   , d n − 1 ) n × n \mathcal S = (d_0,d_1,\cdots,d_{n-1})_{n \times n} S=(d0,d1,,dn1)n×n,由于共轭方向两两线性无关,因而 S \mathcal S S必然是可逆矩阵。该矩阵存在如下性质:

  • 关于 S T Q S = [ ( d 0 ) T ⋮ ( d n − 1 ) T ] Q ( d 0 , ⋯   , d n − 1 ) = [ ( d i ) T Q d j ] n × n \mathcal S^T \mathcal Q \mathcal S = \begin{bmatrix} (d_0)^T \\ \vdots \\ (d_{n-1})^T \end{bmatrix} \mathcal Q (d_0,\cdots,d_{n-1}) = [(d_i)^T \mathcal Q d_j]_{n \times n} STQS= (d0)T(dn1)T Q(d0,,dn1)=[(di)TQdj]n×n,根据共轭方向的定义,当 i ≠ j i \neq j i=j时,必然有: ( d i ) T Q d j = 0 (d_i)^T \mathcal Q d_j = 0 (di)TQdj=0;相反,当 i = j i = j i=j时,由于 Q \mathcal Q Q正定矩阵,因而 ( d i ) T Q d j > 0 (d_i)^T \mathcal Q d_j >0 (di)TQdj>0恒成立。从而 S T Q S \mathcal S^T \mathcal Q \mathcal S STQS不仅是一个正定矩阵,甚至是一个对角阵
    从而达到利用 S \mathcal S S Q \mathcal Q Q进行对角化的目的。
  • 由于 S \mathcal S S可逆,根据逆矩阵的性质,必然有: S − 1 S = S − 1 ( d 0 , d 1 , ⋯   , d n − 1 ) = I \mathcal S^{-1} \mathcal S = \mathcal S^{-1}(d_0,d_1,\cdots,d_{n-1}) = \mathcal I S1S=S1(d0,d1,,dn1)=I(单位矩阵)。将该式展开,有:
    I = S − 1 ( d 0 , d 1 , ⋯   , d n − 1 ) = ( S − 1 d 0 , S − 1 d 1 ⋯ S − 1 d n − 1 ) \begin{aligned} \mathcal I & = \mathcal S^{-1}(d_0,d_1,\cdots,d_{n-1}) \\ & = (\mathcal S^{-1} d_0,\mathcal S^{-1} d_1 \cdots \mathcal S^{-1} d_{n-1}) \end{aligned} I=S1(d0,d1,,dn1)=(S1d0,S1d1S1dn1)
    其中展开后矩阵中的元素 S − 1 d i ( i = 0 , 1 , 2 , ⋯   , n − 1 ) \mathcal S^{-1} d_i(i=0,1,2,\cdots,n-1) S1di(i=0,1,2,,n1)表示单位坐标向量 e i + 1 = ( 0 , 0 , ⋯   , 1 ⏟ i + 1 , ⋯   , 0 ) T e_{i+1} = (0,0,\cdots,\underbrace{1}_{i+1},\cdots,0)^T ei+1=(0,0,,i+1 1,,0)T

如果将决策变量 x = S ⋅ x ^ x = \mathcal S \cdot \hat {x} x=Sx^或者 x ^ = S − 1 x \hat x = \mathcal S^{-1} x x^=S1x,从而原始目标函数 f ( x ) = 1 2 x T Q x + C T x \begin{aligned}f(x) = \frac{1}{2} x^T \mathcal Q x + \mathcal C^T x\end{aligned} f(x)=21xTQx+CTx可替换为一个新函数 f ^ ( x ^ ) \hat f(\hat {x}) f^(x^)
f ^ ( x ^ ) = 1 2 [ x ^ ] T S T Q S ⏟ 对角阵 ⋅ x ^ + ( S T C ) T x ^ \hat f(\hat {x}) = \frac{1}{2} [\hat x]^T \underbrace{\mathcal S^T \mathcal Q \mathcal S}_{对角阵} \cdot \hat {x} + (\mathcal S^T \mathcal C)^T \hat {x} f^(x^)=21[x^]T对角阵 STQSx^+(STC)Tx^
此时的新函数中仅包含关于 x ^ i ( i = 1 , 2 , ⋯   , n ) \hat {x}_i(i=1,2,\cdots,n) x^i(i=1,2,,n)的平方项,而没有交叉项。从而新函数 f ^ ( x ^ ) \hat f(\hat x) f^(x^) x ^ \hat x x^特征空间中的等值线依然是一个椭圆/椭球/超椭球,其长轴与短轴同样与坐标轴平行

回归第一次迭代 x 0 + ∑ i = 0 n − 1 α i ⋅ d i x_0 + \sum_{i=0}^{n-1} \alpha_i \cdot d_i x0+i=0n1αidi,这明显是一个在原始特征空间 x x x上的操作。如果该操作映射在 x ^ \hat x x^的特征空间中会变成什么样的效果 ? ? ?
只需要将 x x x特征空间中的正交向量乘以 S − 1 \mathcal S^{-1} S1即可得到对应 x ^ \hat x x^特征空间的正交向量。
S − 1 x 0 + α 0 S − 1 d 0 + α 1 S − 1 d 1 + ⋯ + α n − 1 S − 1 d n − 1 \mathcal S^{-1}x_0 + \alpha_0 \mathcal S^{-1}d_0 + \alpha_1 \mathcal S^{-1} d_1 + \cdots + \alpha_{n-1} \mathcal S^{-1} d_{n-1} S1x0+α0S1d0+α1S1d1++αn1S1dn1
由于 e i + 1 = S − 1 d i ( i = 1 , 2 , ⋯   , n − 1 ) e_{i+1} = \mathcal S^{-1} d_i(i=1,2,\cdots,n-1) ei+1=S1di(i=1,2,,n1),整理有:
很明显,在 x ^ \hat x x^的特征空间中,相当于坐标轴交替下降法,沿着坐标轴进行搜索。
S − 1 x 0 + α 0 e 1 + α 1 e 2 + ⋯ + α n − 1 e n \mathcal S^{-1}x_0 + \alpha_0 e_1 + \alpha_1 e_2 + \cdots + \alpha_{n-1} e_{n} S1x0+α0e1+α1e2++αn1en

下一节将继续介绍共轭方向法
0 : 37 : 14 / 1 : 26 : 29 0:37:14/1:26:29 0:37:14/1:26:29

Reference \text{Reference} Reference
最优化理论与方法-第七讲-无约束优化问题(三)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/997105.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VAN LKA、LSKA

Visual Attention Network 2022 大核注意力机制LKA 在本文中,提出了一种新的大核注意力large kernal attention(LKA)模型, LKA吸收了卷积和自注意的优点,包括局部结构信息、长程依赖性和适应性。同时,避免…

【结合AOP与ReflectUtil对返回数据进行个性化填充展示】

结合AOP与ReflectUtil对返回数据进行个性化填充展示 背景 对于接口列表返回的数据,我们通常有时候会对某些特殊的字段进行转化,或者根据某逻辑进行重新赋值,举个例子, 比如返回的列表数据中有性别sex,我们通常会同时…

柏林噪声 (PERLIN NOISE)

简介 柏林噪声旨在描述自然中的随机效果,它创建的纹理可以直接运用于顶点着色器,而不是生成一张纹理图,然后用传统的纹理映射技术把贴图附加到一个三维物体上。 这也就相当于,纹理将不需要适应表面,我们只需要提供每个…

【算法训练-链表 七】【排序】:链表排序、链表的奇偶重排、重排链表

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【链表的排序】,使用【链表】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&am…

【LeetCode每日一题合集】2023.9.4-2023.9.10(⭐二叉树的重建二分答案拓扑排序)

文章目录 449. 序列化和反序列化二叉搜索树⭐⭐⭐⭐⭐(二叉树的重建)解法相关题目——297. 二叉树的序列化与反序列化⭐⭐⭐⭐⭐解法——深度优先搜索 2605. 从两个数字数组里生成最小数字哈希表分情况讨论位运算表示集合,分情况讨论&#x1…

Day60|单调栈part03:84.柱状图中最大的矩形

柱状图中最大的矩形 leetcode链接:力扣题目链接 视频链接:单调栈,又一次经典来袭! LeetCode:84.柱状图中最大的矩形 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,…

【多线程】线程安全的单例模式

线程安全的单例模式 饿汉模式懒汉模式单线程版多线程版多线程版(改进) 单例模式能保证某个类在程序中只存在 唯一 一份实例, 而不会创建出多个实例,从而节约了资源并实现数据共享。 比如 JDBC 中的 DataSource 实例就只需要一个. 单例模式具体的实现方式, 分成 “饿…

Unity3D URP 仿蜘蛛侠风格化BloomAO

Unity3D URP 仿蜘蛛侠风格化Bloom&AO BloomBloom效果流程:制作控制面板VolumeComponent.CSCustom Renderer FeatherCustom Renderer PassBloom ShaderComposite Shader 完善Custom Feather风格化AO 总结 本篇文章介绍在URP中如何进行风格化后处理,使…

【MATLAB第74期】#源码分享 | 基于MATLAB的ARX-ARMAX线性自回归移动平均外生模型(结合最小二乘思路)

【MATLAB第74期】#源码分享 | 基于MATLAB的ARX-ARMAX线性自回归移动平均外生模型(结合最小二乘思路) 根据ARX预测输出和实际输出的误差向量,采用ARMAX算法结合ARX误差建模,对预测值进一步细化。通过将误差描述为白噪声的移动平均…

Spring事务管理: 构建稳健的数据库事务处理

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…

C++算法 —— 动态规划(4)子数组

文章目录 1、动规思路简介2、最大子数组和3、环形子数组的最大和4、乘积最大子数组5、乘积为正数的最长子数组长度6、等差数列划分7、最长湍流子数组8、单词拆分9、环绕字符串中唯一的子字符串 每一种算法都最好看完第一篇再去找要看的博客,因为这样会帮你梳理好思路…

商城系统优化

1、DB、模板的渲染速度(thymeleaf)、静态资源、日志、JVM 数据库的优化(参照数据库优化课程)使用索引,减少数据库的交互次数、缓存 thymeleaf使用缓存 静态资源:放到nginx中,实现动静分离 2、…

【数学】ABC 319 E

E - Bus Stops 题意: 思路: 感觉思路比较简单 首先注意到每个询问的范围是1e9,不难想到答案一定存在某个循环节,最后一定是要 %T的 那么问题就在于找到这个循环节是什么 猜想循环节为lcm(p1, p2, p3, ....) 用小数据验证 n…

一篇博客教会您SpringMVC文件上传、下载,多文件上传及工具jrebel的使用

目录 一.文件上传 二.文件下载 三.多文件上传 四,jrebel的介绍 前言: 我们之前已经实现了SpringMVC的增删改查,今天这一篇博客教会您SpringMVC文件上传、下载,多文件上传及工具jrebel的使用,希望这篇博客能够给正在…

二、Spark 调度系统

目录 Spark 调度系统DAGSchedulerSchedulerBackendTaskSchedulerExecutorBackendSpark 任务调度流程 Spark 调度系统 分布式计算的精髓,在于如何把抽象的计算图,转化为实实在在的分布式计算任务,然后以并行计算的方式交付执行。 Spark调度系…

Mojo安装使用初体验

一个声称比python块68000倍的语言 蹭个热度,安装试试 系统配置要求: 不支持Windows系统 配置要求: 系统:Ubuntu 20.04/22.04 LTSCPU:x86-64 CPU (with SSE4.2 or newer)内存:8 GiB memoryPython 3.8 - 3.10g or cla…

华为云云耀云服务器L实例评测 | 分分钟完成打地鼠小游戏部署

前言 在上篇文章【华为云云耀云服务器L实例评测 | 快速部署MySQL使用指南】中,我们已经用【华为云云耀云服务器L实例】在命令行窗口内完成了MySQL的部署并简单使用。但是后台有小伙伴跟我留言说,能不能用【华为云云耀云服务器L实例】来实现个简单的小游…

车载诊断数据库——诊断问卷调查表与CDD关联关系

车载诊断数据库——诊断问卷调查表与CDD关联关系 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 没有人关注你。也无需有人关注你。你必须承认自己的价值,你不能站在他人的角度来反对自己。人生…

超级电容-电池-超级电容混合储能系统能量管理simulink仿真建模模型

建立混合储能系统模型 在Simulink中,首先需要建立一个超级电容和蓄电池并联的混合储能系统模型。其中,超级电容和蓄电池的荷电状态(SOC)需要根据实际情况进行管理。荷电状态可以通过对电池和超级电容的电压、电流等进行测量&…