leetcode链接:力扣题目链接
视频链接:单调栈,又一次经典来袭! LeetCode:84.柱状图中最大的矩形
给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。
求在该柱状图中,能够勾勒出来的矩形的最大面积。
这是一道hard题,首先是暴力解法,任意遍历两个数,然后求最值:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int sum = 0;
for (int i = 0; i < heights.size(); i++) {
int left = i;
int right = i;
for (; left >= 0; left--) {
if (heights[left] < heights[i]) break;
}
for (; right < heights.size(); right++) {
if (heights[right] < heights[i]) break;
}
int w = right - left - 1;
int h = heights[i];
sum = max(sum, w * h);
}
return sum;
}
};
如上代码并不能通过leetcode,超时了,因为时间复杂度是O(n^2)。
双指针法
没想出来,直接看题解
难就难在本题要记录记录每个柱子 左边第一个小于该柱子的下标,而不是左边第一个小于该柱子的高度。
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
vector<int> minLeftIndex(heights.size());
vector<int> minRightIndex(heights.size());
int size = heights.size();
// 记录每个柱子 左边第一个小于该柱子的下标
minLeftIndex[0] = -1; // 注意这里初始化,防止下面while死循环
for (int i = 1; i < size; i++) {
int t = i - 1;
// 这里不是用if,而是不断向左寻找的过程
while (t >= 0 && heights[t] >= heights[i]) t = minLeftIndex[t];
minLeftIndex[i] = t;
}
// 记录每个柱子 右边第一个小于该柱子的下标
minRightIndex[size - 1] = size; // 注意这里初始化,防止下面while死循环
for (int i = size - 2; i >= 0; i--) {
int t = i + 1;
// 这里不是用if,而是不断向右寻找的过程
while (t < size && heights[t] >= heights[i]) t = minRightIndex[t];
minRightIndex[i] = t;
}
// 求和
int result = 0;
for (int i = 0; i < size; i++) {
int sum = heights[i] * (minRightIndex[i] - minLeftIndex[i] - 1);
result = max(sum, result);
}
return result;
}
};
单调栈解法
那么因为本题是要找每个柱子左右两边第一个小于该柱子的柱子,所以从栈头(元素从栈头弹出)到栈底的顺序应该是从大到小的顺序!
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int result = 0;
stack<int> st;
heights.insert(heights.begin(), 0); // 数组头部加入元素0
heights.push_back(0); // 数组尾部加入元素0
st.push(0);
// 第一个元素已经入栈,从下标1开始
for (int i = 1; i < heights.size(); i++) {
if (heights[i] > heights[st.top()]) { // 情况一
st.push(i);
} else if (heights[i] == heights[st.top()]) { // 情况二
st.pop(); // 这个可以加,可以不加,效果一样,思路不同
st.push(i);
} else { // 情况三
while (!st.empty() && heights[i] < heights[st.top()]) { // 注意是while
int mid = st.top();
st.pop();
if (!st.empty()) {
int left = st.top();
int right = i;
int w = right - left - 1;
int h = heights[mid];
result = max(result, w * h);
}
}
st.push(i);
}
}
return result;
}
};
这是一道hard题,再加上本人临近开学事情比较多,先搁置了。二刷具体看思路