【Spring Cloud系列】 雪花算法原理及实现

news2024/11/24 22:50:10

【Spring Cloud系列】 雪花算法原理及实现

文章目录

  • 【Spring Cloud系列】 雪花算法原理及实现
    • 一、概述
    • 二、生成ID规则部分硬性要求
    • 三、ID号生成系统可用性要求
    • 四、解决分布式ID通用方案
      • 4.1 UUID
      • 4.2 数据库自增主键
      • 4.3 基于Redis生成全局id策略
    • 五、SnowFlake(雪花算法)
      • 5.1 SnowFlake特点
      • 5.2 SnowFlake结构
      • 5.3 雪花算法原理
      • 5.4 算法实现
      • 5.4 雪花算法优点
      • 5.5 雪花算法缺点:
    • 六、总结

一、概述

分布式高并发的环境下,常见的就是12306节日订票,在大量用户同是抢购一个方向的票,毫秒级的时间下可能生成数万个订单,此时为确保生成订单ID的唯一性变得至关重要。此时秒杀环境下,不仅要保障ID唯一性,还得确保ID生成的优先度。

二、生成ID规则部分硬性要求

  1. 全局唯一:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。
  2. 趋势递增:在MySQL的InnoDB引擎中适用的是聚集索引,由于多数RDBMS使用B+Tree的数据结构来存储索引数据,在主键的选择上我们尽量使用有序的主键保证写入性能。
  3. 单调递增:保证下一个ID一定大于上一个ID,如事务版本号、排序等特殊需求。
  4. 信息安全:如果ID是连续的,恶意用户的抓取工作就非常容易,直接按照顺序下载指定URL即可;如果是订单号就危险。
  5. 含有时间戳:生成的ID包含完整的时间戳信息。

三、ID号生成系统可用性要求

  1. 高可用:发一个获取分布式ID的请求,服务器就是保证99.9999%的情况下给我创建一个唯一分布式ID。
  2. 低延迟:发一个获取分布式ID的请求,服务器要快,极速。
  3. 高QPS:如果一次请求10万个分布式ID,服务器要顶住并成功创建10万个分布式ID。

四、解决分布式ID通用方案

4.1 UUID

UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为:8-4-4-4-12的36个字符,示例:1E785B2B-111C-752A-997B-3346E7495CE2;UUID性能非常高,不依赖网络,本地生成。

UUID缺点:

  1. 无序,无法预测它的生成顺序,不能生成递增有序的数字。在MySql官方推荐主键约短越好,UUID是一个32位的字符串,所以不推荐使用。

  2. 索引,B+Tree索引的分裂

    分布式Id是主键,主键是聚簇索引。Mysql的索引是B+Tree来实现的,每次新的UUID数据的插入,为了新的UUID数据的插入,为了查询的优化,都会对索引底部的B+Tree进行修改;因为UUID数据是无序的,所以每一次UUID数据的插入都会对主键的聚簇索引做很大的修改,在做数据Insert时,会插入主键是无序的,会导致一些中间节点的产生分裂,会导致大量不饱和的节点。这样大大降低了数据库插入的性能。

4.2 数据库自增主键

单机

在分布式里面,数据库的自增ID机制的主要原理是:数据库自增ID和MySql数据库的replace into实现的。

Replace into的含义是插入一条纪录,如果表中唯一索引的值遇到冲突,则替换老数据。

在单体应用的时候,自增长ID使用,但是在集群分布式应用中单体应用就不适合。

  1. 系统水平扩展比较困难,比如定义好了增长步长和机器台数之后,在大量添加服务器时,需要重新设置初始值,这样可操作性差,所以系统水平扩展方案复杂度高难以实现。
  2. 数据库压力大,每次获取ID都需要读写一次数据库,非常影响性能,不符合分布式ID里面的延迟低和要高QPS的规则(在高并发下,如果都去数据库里面获取Id,非常影响性能的。)

4.3 基于Redis生成全局id策略

在Redis集群情况下,同样和MySql一样需要设置不同的增长步长,同时key一定要设置有效期。可以使用Redis集群来获取更高的吞吐量。

五、SnowFlake(雪花算法)

而Twitter的SnowFlake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统) 因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。SnowFlake每秒能产生26万个自增可排序的ID。

5.1 SnowFlake特点

  1. Twitter的SnowFlake生成ID能够按照时间有序生成。
  2. SnowFlake算法生成Id的结果是一个64bit大小的整数,为一个Long型(转换成字符串后长度最多19)。
  3. 分布式系统内不会产生ID碰撞(由datacenter和workerid作为区分)并且效率较高。

5.2 SnowFlake结构

在这里插入图片描述

5.3 雪花算法原理

雪花算法的原理就是生成一个的64位比特位的long类型的唯一id

  1. 最高1位固定值0,因为生成的id是正整数,如果是1就是负值。
  2. 紧接着是41位存储毫秒级时间戳,2^41/(1000 * 60 * 24 * 365) = 69 ,大概可以使用69年。
  3. 接下来10位存储机器码,包括5位DataCenterId和5位WorkerId,最多可以部署2^10=1024台机器。
  4. 最后12位存储序列号,同一毫秒时间戳时,通过这个递增的序列号来区分,即对于同一台机器而言,同一毫秒级时间戳下,可以生成2^12=4096个不重复id。

可以将雪花算法作为一个单独的服务进行部署,然后需要全局唯一id的系统,请求雪花算法服务获取id即可。

对于每一个雪花算法服务,需要先指定10位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者时其他区别标识的10位比特位的整数都行。

5.4 算法实现

package com.goyeer;
import java.util.Date;

/**
 * @ClassName: SnowFlakeUtil
 * @Author: goyeer
 * @Date: 2023/09/09 19:34
 * @Description:
 */
public class SnowFlakeUtil {

    private static SnowFlakeUtil snowFlakeUtil;
    static {
        snowFlakeUtil = new SnowFlakeUtil();
    }

    // 初始时间戳(纪年),可用雪花算法服务上线时间戳的值
    //
    private static final long INIT_EPOCH = 1694263918335L;

    // 时间位取&
    private static final long TIME_BIT = 0b1111111111111111111111111111111111111111110000000000000000000000L;

    // 记录最后使用的毫秒时间戳,主要用于判断是否同一毫秒,以及用于服务器时钟回拨判断
    private long lastTimeMillis = -1L;

    // dataCenterId占用的位数
    private static final long DATA_CENTER_ID_BITS = 5L;

    // dataCenterId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_DATA_CENTER_ID = ~(-1L << DATA_CENTER_ID_BITS);

    // dataCenterId
    private long dataCenterId;

    // workId占用的位数
    private static final long WORKER_ID_BITS = 5L;

    // workId占用5个比特位,最大值31
    // 0000000000000000000000000000000000000000000000000000000000011111
    private static final long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    // workId
    private long workerId;

    // 最后12位,代表每毫秒内可产生最大序列号,即 2^12 - 1 = 4095
    private static final long SEQUENCE_BITS = 12L;

    // 掩码(最低12位为1,高位都为0),主要用于与自增后的序列号进行位与,如果值为0,则代表自增后的序列号超过了4095
    // 0000000000000000000000000000000000000000000000000000111111111111
    private static final long SEQUENCE_MASK = ~(-1L << SEQUENCE_BITS);

    // 同一毫秒内的最新序号,最大值可为 2^12 - 1 = 4095
    private long sequence;

    // workId位需要左移的位数 12
    private static final long WORK_ID_SHIFT = SEQUENCE_BITS;

    // dataCenterId位需要左移的位数 12+5
    private static final long DATA_CENTER_ID_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS;

    // 时间戳需要左移的位数 12+5+5
    private static final long TIMESTAMP_SHIFT = SEQUENCE_BITS + WORKER_ID_BITS + DATA_CENTER_ID_BITS;

    /**
     * 无参构造
     */
    public SnowFlakeUtil() {
        this(1, 1);
    }

    /**
     * 有参构造
     * @param dataCenterId
     * @param workerId
     */
    public SnowFlakeUtil(long dataCenterId, long workerId) {
        // 检查dataCenterId的合法值
        if (dataCenterId < 0 || dataCenterId > MAX_DATA_CENTER_ID) {
            throw new IllegalArgumentException(
                    String.format("dataCenterId 值必须大于 0 并且小于 %d", MAX_DATA_CENTER_ID));
        }
        // 检查workId的合法值
        if (workerId < 0 || workerId > MAX_WORKER_ID) {
            throw new IllegalArgumentException(String.format("workId 值必须大于 0 并且小于 %d", MAX_WORKER_ID));
        }
        this.workerId = workerId;
        this.dataCenterId = dataCenterId;
    }

    /**
     * 获取唯一ID
     * @return
     */
    public static Long getSnowFlakeId() {
        return snowFlakeUtil.nextId();
    }

    /**
     * 通过雪花算法生成下一个id,注意这里使用synchronized同步
     * @return 唯一id
     */
    public synchronized long nextId() {
        long currentTimeMillis = System.currentTimeMillis();
        System.out.println(currentTimeMillis);
        // 当前时间小于上一次生成id使用的时间,可能出现服务器时钟回拨问题
        if (currentTimeMillis < lastTimeMillis) {
            throw new RuntimeException(
                    String.format("可能出现服务器时钟回拨问题,请检查服务器时间。当前服务器时间戳:%d,上一次使用时间戳:%d", currentTimeMillis,
                            lastTimeMillis));
        }
        if (currentTimeMillis == lastTimeMillis) {
            // 还是在同一毫秒内,则将序列号递增1,序列号最大值为4095
            // 序列号的最大值是4095,使用掩码(最低12位为1,高位都为0)进行位与运行后如果值为0,则自增后的序列号超过了4095
            // 那么就使用新的时间戳
            sequence = (sequence + 1) & SEQUENCE_MASK;
            if (sequence == 0) {
                currentTimeMillis = getNextMillis(lastTimeMillis);
            }
        } else { // 不在同一毫秒内,则序列号重新从0开始,序列号最大值为4095
            sequence = 0;
        }
        // 记录最后一次使用的毫秒时间戳
        lastTimeMillis = currentTimeMillis;
        // 核心算法,将不同部分的数值移动到指定的位置,然后进行或运行
        // <<:左移运算符, 1 << 2 即将二进制的 1 扩大 2^2 倍
        // |:位或运算符, 是把某两个数中, 只要其中一个的某一位为1, 则结果的该位就为1
        // 优先级:<< > |
        return
                // 时间戳部分
                ((currentTimeMillis - INIT_EPOCH) << TIMESTAMP_SHIFT)
                        // 数据中心部分
                        | (dataCenterId << DATA_CENTER_ID_SHIFT)
                        // 机器表示部分
                        | (workerId << WORK_ID_SHIFT)
                        // 序列号部分
                        | sequence;
    }

    /**
     * 获取指定时间戳的接下来的时间戳,也可以说是下一毫秒
     * @param lastTimeMillis 指定毫秒时间戳
     * @return 时间戳
     */
    private long getNextMillis(long lastTimeMillis) {
        long currentTimeMillis = System.currentTimeMillis();
        while (currentTimeMillis <= lastTimeMillis) {
            currentTimeMillis = System.currentTimeMillis();
        }
        return currentTimeMillis;
    }

    /**
     * 获取随机字符串,length=13
     * @return
     */
    public static String getRandomStr() {
        return Long.toString(getSnowFlakeId());
    }

    /**
     * 从ID中获取时间
     * @param id 由此类生成的ID
     * @return
     */
    public static Date getTimeBySnowFlakeId(long id) {
        return new Date(((TIME_BIT & id) >> 22) + INIT_EPOCH);
    }

    public static void main(String[] args) {
        SnowFlakeUtil snowFlakeUtil = new SnowFlakeUtil();
        long id = snowFlakeUtil.nextId();

        System.out.println(id);
        Date date = SnowFlakeUtil.getTimeBySnowFlakeId(id);
        System.out.println(date);
        long time = date.getTime();
        System.out.println(time);
        System.out.println(getRandomStr());

    }

}

5.4 雪花算法优点

  1. 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
  2. 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
  3. 不依赖第三方库或者中间件。
  4. 算法简单,在内存中进行,效率高。

5.5 雪花算法缺点:

  1. 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。

六、总结

其实雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。

注意,雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。

对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/993786.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构与算法-----顺序表(链表篇)

目录 前言 顺序表 链表 概念 与数组的不同 单链表 1. 创建节点 2.插入节点 尾插节点&#xff08;形成链表结构&#xff09; 向指定位置插入节点&#xff08;链表已有&#xff09; ​编辑 3.遍历链表数据 4.获取链表长度 5.删除节点 删除尾节点 删除指定节点 …

51单片机项目(10)——基于51单片机的电压计

本次设计的电压计&#xff0c;使用ADC0832芯片&#xff0c;测到电压后&#xff0c;将电压信息发送到串口进行显示。仿真功能正常&#xff0c;能够运行。&#xff08;工程文件和代码放在最后&#xff09; 电路图如下&#xff1a; 运行过程如下&#xff1a; ADC0832介绍&#xff…

linux下检测CPU性能的mpstat命令安装与用法

1、安装命令 $ sudo apt-get install sysstat sysstat安装包还包括了检测设备其它状态的命令&#xff0c;查看命令如下&#xff1a; 2、检测CPU命令语法 $ mpstat --h //查看mpstat的语法 Usage: mpstat [ options ] [ <interval> [ <count> ] ] Options are: …

设计模式之访问器模式(Visitor)的C++实现

1、访问器模式的提出 在软件开发过程中&#xff0c;早已发布的软件版本&#xff0c;由于需求的变化&#xff0c;需要给某个类层次结构增加新的方法。如果在该基类和子类中都添加新的行为方法&#xff0c;将给代码原有的结构带来破坏&#xff0c;同时&#xff0c;也违反了修改封…

D. Sorting By Multiplication

Problem - D - Codeforces 思路&#xff1a;我们首先考虑当只能乘以正数时&#xff0c;那么变为单调增的方法就是找所有w[i]>w[i1]的对数&#xff0c;因为如果存在一个w[i]>w[i1]&#xff0c;那么我们一定至少需要进行一次操作&#xff0c;并且我们还知道我们进行一次操…

Redis经典问题:缓存穿透

&#xff08;笔记总结自《黑马点评》项目&#xff09; 一、产生原因 用户请求的数据在缓存中和数据库中都不存在&#xff0c;不断发起这样的请求&#xff0c;给数据库带来巨大压力。 常见的解决方式有缓存空对象和布隆过滤器。 二、缓存空对象 思路&#xff1a;当我们客户…

JP《乡村振兴振兴战略下传统村落文化旅游设计》许少辉书香续,山水长

JP《乡村振兴振兴战略下传统村落文化旅游设计》许少辉书香续&#xff0c;山水长

MySQL--MySQL表的增删改查(基础)

排序&#xff1a;ORDER BY 语法&#xff1a; – ASC 为升序&#xff08;从小到大&#xff09; – DESC 为降序&#xff08;从大到小&#xff09; – 默认为 ASC SELECT … FROM table_name [WHERE …] ORDER BY column [ASC|DESC], […]; *** update

【数据结构--顺序表】合并两个有序数组

题目描述&#xff1a; 代码实现&#xff1a; void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){int x0;if(m0)//如果nums1为空&#xff0c;而nums2不为空&#xff0c;则将nums2拷贝至nums1{while(nums1Size--){nums1[x]nums2[x];x;}}if(n0)//…

深入学习 GC 算法 - 标记清除算法

前言&#xff1a; &#x1f4d5;作者简介&#xff1a;热爱编程的小七&#xff0c;致力于C、Java、Python等多编程语言&#xff0c;热爱编程和长板的运动少年&#xff01; &#x1f4d8;相关专栏Java基础语法&#xff0c;JavaEE初阶&#xff0c;数据库&#xff0c;数据结构和算法…

【蓝凌表单】如何限制明细表字段1与字段2一致时不允许提交

无需开发&#xff0c;表单内置功能快速解决&#xff1b; 有些搞笑&#xff0c;维护蓝凌系统好几年&#xff0c;对系统好多功能也不是很熟悉&#xff0c; 当接到业务需求&#xff0c;不允许某信息跟某信息一致的需求时&#xff0c;第一时间是想到用JS脚本去实现&#xff0c;忽略…

机器学习实战-系列教程3:手撕线性回归2之单特征线性回归(项目实战、原理解读、源码解读)

&#x1f308;&#x1f308;&#x1f308;机器学习 实战系列 总目录 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 手撕线性回归1之线性回归类的实现 手撕线性回归2之单特征线性回归 手撕线性回归3之多特征线性回归 手撕线性回归4之非线性回归# 5…

0-1背包-动态规划

一、01背包 描述&#xff1a;有 N 件物品和一个容量为 V 的背包&#xff0c;每件物品只能使用一次 第 i 件物品的体积是 Ci&#xff0c;价值是 Wi 求解将哪些物品装入背包&#xff0c;能够在不超过背包容量的情况下使总价值最大 求解&#xff1a;动态规划 使用dp[i][j]表示从…

zabbix监控H3C设备

背景 常见的服务和主机已经使用Prometheus进行监控了&#xff0c;但是网络设备还未配置监控。使用基于SNMP对网络设备进行监控。 设备概览 主要类型为H3C的路由器和交换机。H3CS5560交换机 路由器MER5200 er8300 步骤 配置网络设备开启telnet远程&#xff1b; 配置启用sn…

nodejs采集淘宝、天猫网商品详情数据以及解决_m_h5_tk令牌及sign签名验证(2023-09-09)

一、淘宝、天猫sign加密算法 淘宝、天猫对于h5的访问采用了和APP客户端不同的方式&#xff0c;由于在h5的js代码中保存appsercret具有较高的风险&#xff0c;mtop采用了随机分配令牌的方式&#xff0c;为每个访问端分配一个token&#xff0c;保存在用户的cookie中&#xff0c;通…

SAP-MM-销售订单库存转移到普通库存

业务需求&#xff1a; 特殊库存-销售订单库存 有产成品物料1个&#xff0c;现在需要在集团下的两个公司间调拨&#xff0c;需要把特殊库存E调拨到普通库存里&#xff0c;再从H020普通库存调拨到另一个工厂1000. 注意事项&#xff1a;库存地点需要扩充&#xff0c;否则调拨会报…

iOS 17新功能:教你轻松掌握锁定屏幕快捷方式

通过iOS 17&#xff0c;苹果为iPhone用户提供了使用快捷方式锁定手机屏幕的能力。 为什么你需要学习如何使用iOS锁定屏幕快捷方式&#xff1f;按下iPhone上的电源按钮激活这个屏幕肯定是最简单的吗&#xff1f;嗯&#xff0c;这并不总是正确的。如果你在按下物理按钮时遇到困难…

【2023知乎爬虫】批量获取问题的全部回答

一.需求 爬取任意问题下的所有回答&#xff0c;如下图&#xff1a; 1.根据问题&#xff0c;批量获取问题下的所有回答、与对应问题的关系到answer.csv文件&#xff1b; 2.保存当前问题基本信息到quesiton_info.csv文件&#xff1b; 二.展示爬取结果 三.讲解步骤 3.1 新建项…

个人开发者看过来,我搭了一个监控系统免费用

最近在做一个自己的项目&#xff0c;平时就在自己电脑上跑着&#xff0c;有一天回去突然就挂了&#xff0c;查了半天也没搞清楚原因&#xff0c;想看个监控都没有&#xff0c;什么时候挂的&#xff0c;为啥挂了&#xff0c;统统都不知道。平时做公司项目多了&#xff0c;监控用…

C/C++操作加密与不加密的zip文件

为了后续的方便操作zip文件&#xff0c; 将所有的操作封装成了一个动态库了。 /*** \description 从压缩包文件中解压出指定的文件到指定的目录.* \author sunsz* \date 2023/09/09**/ LIBZIP_API int UnpackFile(const char* password, char zipfilename[], char filename_…