项目一:基于YOLOv7的输电线路销钉缺失检测项目

news2025/1/22 17:02:12

1. YOLOv7模型介绍

YOLOv7是目标检测算法YOLO(You Only Look Once)的第七个版本,也是目前较流行的YOLO算法版本之一。

YOLOv8主要结构:

1. Backbone网络:采用CSPDarknet53作为主干网络,在不增加参数数量的情况下提高了网络效果。CSPDarknet53使用多层跨层连接(Cross Stage Partial)实现,可以缓解梯度弥散,提高了特征表达能力。

2. Neck:采用YOLONeck模块作为连接头,用于整合backbone网络输出的不同尺度特征图,提供更丰富的语义信息给下一步的处理。

3. Head:使用YOLOv7Head模块,具有多任务同时实现物体识别和定位,且充分利用不同分辨率的特征图,使得对不同尺寸物体的检测有更好的性能。

4. 损失函数:采用YOLOv3采用的损失函数,由于该损失函数在训练过程中可以平衡不同尺寸目标框的权重,使得算法对大、小目标框有更好的检测效果。

相较于其他YOLO系列算法:

1. 网络结构:YOLOv7采用了CSPDarknet53作为主干网络,使用多层跨层连接,提高了特征表达能力,同时采用了YOLONeck模块和YOLOv7Head模块,使得对不同尺寸物体的检测有更好的性能。

2. 数据增强:YOLOv7引入新的数据增强策略,增加训练数据的难度,提高算法的鲁棒性和泛化能力。

3. 训练策略:YOLOv7使用动态权重更新技术,可根据目标的重要性自适应地调整权重,同时使用注意力机制和最大建模平均池化等技术,提高了检测性能。

4. 精度和速度:YOLOv7采用上述改进方案,提高了算法的精度和速度,具有更好的鲁棒性和泛化性能。

YOLOv7在COCO数据集的评测结果为,使用YOLOv7-S模型,测试时使用图像的每个正方形区域都被分为2个子区域的方法,得到的F1值可以达到46.9%,可以满足一些低精度的检测应用。同时,使用YOLOv7母型模型在图像尺寸为608×608的情况下,在COCO最新测试集上,获得的FPS为76.5,同时平均准确率F1值为54.2%,相较于其它目标检测算法,YOLOv7的检测速度和准确度都具有一定优势。

YOLOv7结构图来源:YOLOV7详细解读(一)网络架构解读

YOLOv7的主干特征提取网络:

from functools import wraps

from tensorflow.keras import backend as K
from tensorflow.keras.initializers import RandomNormal
from tensorflow.keras.layers import (Add, BatchNormalization, Concatenate, Conv2D, Layer,
                          MaxPooling2D, ZeroPadding2D)
from tensorflow.keras.regularizers import l2
from utils.utils import compose


class SiLU(Layer):
    def __init__(self, **kwargs):
        super(SiLU, self).__init__(**kwargs)
        self.supports_masking = True

    def call(self, inputs):
        return inputs * K.sigmoid(inputs)

    def get_config(self):
        config = super(SiLU, self).get_config()
        return config

    def compute_output_shape(self, input_shape):
        return input_shape

@wraps(Conv2D)
def DarknetConv2D(*args, **kwargs):
    darknet_conv_kwargs = {'kernel_initializer' : RandomNormal(stddev=0.02), 'kernel_regularizer' : l2(kwargs.get('weight_decay', 0))}
    darknet_conv_kwargs['padding'] = 'valid' if kwargs.get('strides')==(2, 2) else 'same'   
    try:
        del kwargs['weight_decay']
    except:
        pass
    darknet_conv_kwargs.update(kwargs)
    return Conv2D(*args, **darknet_conv_kwargs)
    
def DarknetConv2D_BN_SiLU(*args, **kwargs):
    no_bias_kwargs = {'use_bias': False}
    no_bias_kwargs.update(kwargs)
    if "name" in kwargs.keys():
        no_bias_kwargs['name'] = kwargs['name'] + '.conv'
    return compose(
        DarknetConv2D(*args, **no_bias_kwargs),
        BatchNormalization(momentum = 0.97, epsilon = 0.001, name = kwargs['name'] + '.bn'),
        SiLU())

def Transition_Block(x, c2, weight_decay=5e-4, name = ""):
    x_1 = MaxPooling2D((2, 2), strides=(2, 2))(x)
    x_1 = DarknetConv2D_BN_SiLU(c2, (1, 1), weight_decay=weight_decay, name = name + '.cv1')(x_1)
    
    x_2 = DarknetConv2D_BN_SiLU(c2, (1, 1), weight_decay=weight_decay, name = name + '.cv2')(x)
    x_2 = ZeroPadding2D(((1, 1),(1, 1)))(x_2)
    x_2 = DarknetConv2D_BN_SiLU(c2, (3, 3), strides=(2, 2), weight_decay=weight_decay, name = name + '.cv3')(x_2)
    y = Concatenate(axis=-1)([x_2, x_1])
    return y

def Multi_Concat_Block(x, c2, c3, n=4, e=1, ids=[0], weight_decay=5e-4, name = ""):
    c_ = int(c2 * e)
        
    x_1 = DarknetConv2D_BN_SiLU(c_, (1, 1), weight_decay=weight_decay, name = name + '.cv1')(x)
    x_2 = DarknetConv2D_BN_SiLU(c_, (1, 1), weight_decay=weight_decay, name = name + '.cv2')(x)
    
    x_all = [x_1, x_2]
    for i in range(n):
        x_2 = DarknetConv2D_BN_SiLU(c2, (3, 3), weight_decay=weight_decay, name = name + '.cv3.' + str(i))(x_2)
        x_all.append(x_2)
    y = Concatenate(axis=-1)([x_all[id] for id in ids])
    y = DarknetConv2D_BN_SiLU(c3, (1, 1), weight_decay=weight_decay, name = name + '.cv4')(y)
    return y

def darknet_body(x, transition_channels, block_channels, n, phi, weight_decay=5e-4):
    ids = {
        'l' : [-1, -3, -5, -6],
        'x' : [-1, -3, -5, -7, -8], 
    }[phi]

    x = DarknetConv2D_BN_SiLU(transition_channels, (3, 3), strides = (1, 1), weight_decay=weight_decay, name = 'backbone.stem.0')(x)
    x = ZeroPadding2D(((1, 1),(1, 1)))(x)
    x = DarknetConv2D_BN_SiLU(transition_channels * 2, (3, 3), strides = (2, 2), weight_decay=weight_decay, name = 'backbone.stem.1')(x)
    x = DarknetConv2D_BN_SiLU(transition_channels * 2, (3, 3), strides = (1, 1), weight_decay=weight_decay, name = 'backbone.stem.2')(x)
    
    x = ZeroPadding2D(((1, 1),(1, 1)))(x)
    x = DarknetConv2D_BN_SiLU(transition_channels * 4, (3, 3), strides = (2, 2), weight_decay=weight_decay, name = 'backbone.dark2.0')(x)
    x = Multi_Concat_Block(x, block_channels * 2, transition_channels * 8, n=n, ids=ids, weight_decay=weight_decay, name = 'backbone.dark2.1')
    
    x = Transition_Block(x, transition_channels * 4, weight_decay=weight_decay, name = 'backbone.dark3.0')
    x = Multi_Concat_Block(x, block_channels * 4, transition_channels * 16, n=n, ids=ids, weight_decay=weight_decay, name = 'backbone.dark3.1')
    feat1 = x
    
    x = Transition_Block(x, transition_channels * 8, weight_decay=weight_decay, name = 'backbone.dark4.0')
    x = Multi_Concat_Block(x, block_channels * 8, transition_channels * 32, n=n, ids=ids, weight_decay=weight_decay, name = 'backbone.dark4.1')
    feat2 = x
    
    x = Transition_Block(x, transition_channels * 16, weight_decay=weight_decay, name = 'backbone.dark5.0')
    x = Multi_Concat_Block(x, block_channels * 8, transition_channels * 32, n=n, ids=ids, weight_decay=weight_decay, name = 'backbone.dark5.1')
    feat3 = x
    return feat1, feat2, feat3

YOLOv7特征金字塔部分:

import numpy as np
from tensorflow.keras.layers import (Add, BatchNormalization, Concatenate, Conv2D, Input,
                                    Lambda, MaxPooling2D, UpSampling2D)
from tensorflow.keras.models import Model

from nets.backbone import (DarknetConv2D, DarknetConv2D_BN_SiLU,
                           Multi_Concat_Block, SiLU, Transition_Block,
                           darknet_body)
from nets.yolo_training import yolo_loss


def SPPCSPC(x, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13), weight_decay=5e-4, name=""):
    c_ = int(2 * c2 * e)  # hidden channels
    x1 = DarknetConv2D_BN_SiLU(c_, (1, 1), weight_decay=weight_decay, name = name + '.cv1')(x)
    x1 = DarknetConv2D_BN_SiLU(c_, (3, 3), weight_decay=weight_decay, name = name + '.cv3')(x1)
    x1 = DarknetConv2D_BN_SiLU(c_, (1, 1), weight_decay=weight_decay, name = name + '.cv4')(x1)
    
    y1 = Concatenate(axis=-1)([x1] + [MaxPooling2D(pool_size=(m, m), strides=(1, 1), padding='same')(x1) for m in k])
    y1 = DarknetConv2D_BN_SiLU(c_, (1, 1), weight_decay=weight_decay, name = name + '.cv5')(y1)
    y1 = DarknetConv2D_BN_SiLU(c_, (3, 3), weight_decay=weight_decay, name = name + '.cv6')(y1)
    
    y2 = DarknetConv2D_BN_SiLU(c_, (1, 1), weight_decay=weight_decay, name = name + '.cv2')(x)
    out = Concatenate(axis=-1)([y1, y2])
    out = DarknetConv2D_BN_SiLU(c2, (1, 1), weight_decay=weight_decay, name = name + '.cv7')(out)
    
    return out

def fusion_rep_vgg(fuse_layers, trained_model, infer_model):
    for layer_name, use_bias, use_bn in fuse_layers:

        conv_kxk_weights = trained_model.get_layer(layer_name + '.rbr_dense.0').get_weights()[0]
        conv_1x1_weights = trained_model.get_layer(layer_name + '.rbr_1x1.0').get_weights()[0]

        if use_bias:
            conv_kxk_bias = trained_model.get_layer(layer_name + '.rbr_dense.0').get_weights()[1]
            conv_1x1_bias = trained_model.get_layer(layer_name + '.rbr_1x1.0').get_weights()[1]
        else:
            conv_kxk_bias = np.zeros((conv_kxk_weights.shape[-1],))
            conv_1x1_bias = np.zeros((conv_1x1_weights.shape[-1],))

        if use_bn:
            gammas_kxk, betas_kxk, means_kxk, var_kxk = trained_model.get_layer(layer_name + '.rbr_dense.1').get_weights()
            gammas_1x1, betas_1x1, means_1x1, var_1x1 = trained_model.get_layer(layer_name + '.rbr_1x1.1').get_weights()

        else:
            gammas_1x1, betas_1x1, means_1x1, var_1x1 = [np.ones((conv_1x1_weights.shape[-1],)),
                                                         np.zeros((conv_1x1_weights.shape[-1],)),
                                                         np.zeros((conv_1x1_weights.shape[-1],)),
                                                         np.ones((conv_1x1_weights.shape[-1],))]
            gammas_kxk, betas_kxk, means_kxk, var_kxk = [np.ones((conv_kxk_weights.shape[-1],)),
                                                         np.zeros((conv_kxk_weights.shape[-1],)),
                                                         np.zeros((conv_kxk_weights.shape[-1],)),
                                                         np.ones((conv_kxk_weights.shape[-1],))]
        gammas_res, betas_res, means_res, var_res = [np.ones((conv_1x1_weights.shape[-1],)),
                                                     np.zeros((conv_1x1_weights.shape[-1],)),
                                                     np.zeros((conv_1x1_weights.shape[-1],)),
                                                     np.ones((conv_1x1_weights.shape[-1],))]

        # _fuse_bn_tensor(self.rbr_dense)
        w_kxk = (gammas_kxk / np.sqrt(np.add(var_kxk, 1e-3))) * conv_kxk_weights
        b_kxk = (((conv_kxk_bias - means_kxk) * gammas_kxk) / np.sqrt(np.add(var_kxk, 1e-3))) + betas_kxk
        
        # _fuse_bn_tensor(self.rbr_dense)
        kernel_size = w_kxk.shape[0]
        in_channels = w_kxk.shape[2]
        w_1x1 = np.zeros_like(w_kxk)
        w_1x1[kernel_size // 2, kernel_size // 2, :, :] = (gammas_1x1 / np.sqrt(np.add(var_1x1, 1e-3))) * conv_1x1_weights
        b_1x1 = (((conv_1x1_bias - means_1x1) * gammas_1x1) / np.sqrt(np.add(var_1x1, 1e-3))) + betas_1x1

        w_res = np.zeros_like(w_kxk)
        for i in range(in_channels):
            w_res[kernel_size // 2, kernel_size // 2, i % in_channels, i] = 1
        w_res = ((gammas_res / np.sqrt(np.add(var_res, 1e-3))) * w_res)
        b_res = (((0 - means_res) * gammas_res) / np.sqrt(np.add(var_res, 1e-3))) + betas_res

        weight = [w_res, w_1x1, w_kxk]
        bias = [b_res, b_1x1, b_kxk]
        
        infer_model.get_layer(layer_name).set_weights([np.array(weight).sum(axis=0), np.array(bias).sum(axis=0)])

def RepConv(x, c2, mode="train", weight_decay=5e-4, name=""):
    if mode == "predict":
        out = DarknetConv2D(c2, (3, 3), name = name, use_bias=True, weight_decay=weight_decay, padding='same')(x)
        out = SiLU()(out)
    elif mode == "train":
        x1 = DarknetConv2D(c2, (3, 3), name = name + '.rbr_dense.0', use_bias=False, weight_decay=weight_decay, padding='same')(x)
        x1 = BatchNormalization(momentum = 0.97, epsilon = 0.001, name = name + '.rbr_dense.1')(x1)
        x2 = DarknetConv2D(c2, (1, 1), name = name + '.rbr_1x1.0', use_bias=False, weight_decay=weight_decay, padding='same')(x)
        x2 = BatchNormalization(momentum = 0.97, epsilon = 0.001, name = name + '.rbr_1x1.1')(x2)
        
        out = Add()([x1, x2])
        out = SiLU()(out)
    return out

def yolo_body(input_shape, anchors_mask, num_classes, phi, weight_decay=5e-4, mode="train"):

    transition_channels = {'l' : 32, 'x' : 40}[phi]
    block_channels      = 32
    panet_channels      = {'l' : 32, 'x' : 64}[phi]
    e       = {'l' : 2, 'x' : 1}[phi]
    n       = {'l' : 4, 'x' : 6}[phi]
    ids     = {'l' : [-1, -2, -3, -4, -5, -6], 'x' : [-1, -3, -5, -7, -8]}[phi]

    inputs      = Input(input_shape)
    feat1, feat2, feat3 = darknet_body(inputs, transition_channels, block_channels, n, phi, weight_decay)
    P5          = SPPCSPC(feat3, transition_channels * 16, weight_decay=weight_decay, name="sppcspc")
    P5_conv     = DarknetConv2D_BN_SiLU(transition_channels * 8, (1, 1), weight_decay=weight_decay, name="conv_for_P5")(P5)
    P5_upsample = UpSampling2D()(P5_conv)
    P4          = Concatenate(axis=-1)([DarknetConv2D_BN_SiLU(transition_channels * 8, (1, 1), weight_decay=weight_decay, name="conv_for_feat2")(feat2), P5_upsample])
    P4          = Multi_Concat_Block(P4, panet_channels * 4, transition_channels * 8, e=e, n=n, ids=ids, weight_decay=weight_decay, name="conv3_for_upsample1")

    P4_conv     = DarknetConv2D_BN_SiLU(transition_channels * 4, (1, 1), weight_decay=weight_decay, name="conv_for_P4")(P4)
    P4_upsample = UpSampling2D()(P4_conv)
    P3          = Concatenate(axis=-1)([DarknetConv2D_BN_SiLU(transition_channels * 4, (1, 1), weight_decay=weight_decay, name="conv_for_feat1")(feat1), P4_upsample])
    P3          = Multi_Concat_Block(P3, panet_channels * 2, transition_channels * 4, e=e, n=n, ids=ids, weight_decay=weight_decay, name="conv3_for_upsample2")
        
    P3_downsample = Transition_Block(P3, transition_channels * 4, weight_decay=weight_decay, name="down_sample1")
    P4 = Concatenate(axis=-1)([P3_downsample, P4])
    P4 = Multi_Concat_Block(P4, panet_channels * 4, transition_channels * 8, e=e, n=n, ids=ids, weight_decay=weight_decay, name="conv3_for_downsample1")

    P4_downsample = Transition_Block(P4, transition_channels * 8, weight_decay=weight_decay, name="down_sample2")
    P5 = Concatenate(axis=-1)([P4_downsample, P5])
    P5 = Multi_Concat_Block(P5, panet_channels * 8, transition_channels * 16, e=e, n=n, ids=ids, weight_decay=weight_decay, name="conv3_for_downsample2")
    
    if phi == "l":
        P3 = RepConv(P3, transition_channels * 8, mode, weight_decay=weight_decay, name="rep_conv_1")
        P4 = RepConv(P4, transition_channels * 16, mode, weight_decay=weight_decay, name="rep_conv_2")
        P5 = RepConv(P5, transition_channels * 32, mode, weight_decay=weight_decay, name="rep_conv_3")
    else:
        P3 = DarknetConv2D_BN_SiLU(transition_channels * 8, (3, 3), strides=(1, 1), weight_decay=weight_decay, name="rep_conv_1")(P3)
        P4 = DarknetConv2D_BN_SiLU(transition_channels * 16, (3, 3), strides=(1, 1), weight_decay=weight_decay, name="rep_conv_2")(P4)
        P5 = DarknetConv2D_BN_SiLU(transition_channels * 32, (3, 3), strides=(1, 1), weight_decay=weight_decay, name="rep_conv_3")(P5)

    out2 = DarknetConv2D(len(anchors_mask[2]) * (5 + num_classes), (1, 1), weight_decay=weight_decay, strides = (1, 1), name = 'yolo_head_P3')(P3)
    out1 = DarknetConv2D(len(anchors_mask[1]) * (5 + num_classes), (1, 1), weight_decay=weight_decay, strides = (1, 1), name = 'yolo_head_P4')(P4)
    out0 = DarknetConv2D(len(anchors_mask[0]) * (5 + num_classes), (1, 1), weight_decay=weight_decay, strides = (1, 1), name = 'yolo_head_P5')(P5)
    return Model(inputs, [out0, out1, out2])

def get_train_model(model_body, input_shape, num_classes, anchors, anchors_mask, label_smoothing):
    y_true = [Input(shape = (input_shape[0] // {0:32, 1:16, 2:8}[l], input_shape[1] // {0:32, 1:16, 2:8}[l], \
                                len(anchors_mask[l]), 2)) for l in range(len(anchors_mask))] + [Input(shape = [None, 5])]
    model_loss  = Lambda(
        yolo_loss, 
        output_shape    = (1, ), 
        name            = 'yolo_loss', 
        arguments       = {
            'input_shape'       : input_shape, 
            'anchors'           : anchors, 
            'anchors_mask'      : anchors_mask, 
            'num_classes'       : num_classes, 
            'label_smoothing'   : label_smoothing, 
            'balance'           : [0.4, 1.0, 4],
            'box_ratio'         : 0.05,
            'obj_ratio'         : 1 * (input_shape[0] * input_shape[1]) / (640 ** 2), 
            'cls_ratio'         : 0.5 * (num_classes / 80)
        }
    )([*model_body.output, *y_true])
    model       = Model([model_body.input, *y_true], model_loss)
    return model

2. 数据集简介

数据集包含1200张图像,利用labelimg标注程序对图像中包含的缺陷进行标注,标注销钉正常与销钉缺失两类目标,标签格式为voc标签。两类标签分布:销钉正常789,销钉异常656。

3. 检测模型训练

3.1 环境准备

训练软件环境:scipy==1.4.1;numpy==1.18.4;matplotlib==3.2.1;opencv_python==4.2.0.34

tensorflow_gpu==2.2.0;tqdm==4.46.1;Pillow==8.2.0;h5py==2.10.0。

硬件环境:Windows11,3060显卡。

3.2 训练参数设置

训练:测试:验证=8:1:1;一开始采用的是Aadm优化器,但训练过程中发现,虽模型拟合速度较快,但训练得到的模型泛化能力很差。采用冻结训练,主要训练参数设置如下:

    input_shape     = [640, 640]
    mosaic              = True
    mosaic_prob         = 0.5
    mixup               = True
    mixup_prob          = 0.5
    special_aug_ratio   = 0.5(前50%轮开启moasic增强)
    Init_Epoch          = 180
    Freeze_Epoch        = 50
    Freeze_batch_size   = 16 
    UnFreeze_Epoch      = 300
    Unfreeze_batch_size = 4
    Init_lr             = 1e-2
    Min_lr              = Init_lr * 0.01
    optimizer_type      = "sgd"
    momentum            = 0.937
    weight_decay        = 5e-4
  
    lr_decay_type       = 'cos'

3.3 训练结果

3.4 测试结果可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/964661.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

springboot之一:配置文件(内外部配置优先顺序+properties、xml、yaml基础语法+profile动态切换配置、激活方式)

配置的概念: Spring Boot是基于约定的,所以很多配置都有默认值,但如果想使用自己的配置替换默认配置的话,就可以使用application.properties或者application.yml(application.yaml)进行配置。 注意配置文件的命名必须是applicat…

详解MES中的四大现场执行管理模式

导 读 ( 文/ 3426 ) 制造业是全球经济中至关重要的一部分,随着市场竞争的加剧和客户需求的多样化,企业需要寻找合适的生产方式来提高生产效率、降低成本并保证产品质量。在这个背景下,制造执行系统(MES)作为连接管理层…

【LLM模型篇】LLaMA2 | Vicuna | EcomGPT等(更新中)

文章目录 一、Base modelchatglm2模型Vicuna模型LLaMA2模型1. 训练细节2. Evaluation Results3. 更多参考 alpaca模型其他大模型和peft高效参数微调二、垂直领域大模型MedicalGPT:医疗大模型TransGPT:交通大模型​EcomGPT:电商领域大模型1. s…

WPF Material Design 初次使用

文章目录 前言相关资源快速开始快速开始说明地址 吐槽一下 前言 MD全称MaterialDesignInXamlToolkit,MaterialDesign和Bootstrap一样,都是一个UI风格库。相当于衣服中的休闲服,汉服,牛仔裤一样,就是风格不一样的Ui框架…

【包过滤防火墙-iptables】的简单使用

文章目录 规则链的分类--五链处理的动作iptables常用参数和作用 防火墙就是堵和通的作用 iptables :包过滤防火墙,是内核防火墙netfilter的管理工具 核心:四表五链 规则链的分类–五链 在进行路由选择前处理的数据包:PREROUTIN…

财报解读:成功通过“期中考”,创维多元布局产生多大协同效应?

2023年以来,在下游市场需求仍在复苏以及存量市场竞争加剧的背景之下,消费电子行业的发展受到不小挑战。不过,从中期业绩来看,可以发现一些企业还是具备一定的风险抵御能力,发展韧性显著,创维就是其中一员。…

十大管理——项目成本管理

目录 1.成本管理概念 2.成本管理的四个过程域 2.1四个过程的整体理解 ​2.2四个过程的ITO口诀版记忆 2.3过程1——制定项目管理计划 ​2.4过程2——项目成本估算​ 2.5过程3——项目成本预算 2.5过程4——项目成本控制 3计算题 1.成本管理概念 项目成本管理就是要确保…

window 常用基础命令

0、起步 0-1) 获取命令的参数指引 netstat /? 0-2) 关于两个斜杠: window 文件路径中使用反斜杠:\ linux 文件路径中使用:/ 1、开关机类指令 shutdown /s # 关机shutdown /r # 重启shutdown /l …

设备数据采集的挑战与机遇

导 读 ( 文/ 1661 ) 在现代制造业中,数据是实现高效、质量和盈利的关键驱动力。工厂设备数据采集是一种通过收集、分析和利用设备和流程数据,以提高生产效率、质量和可靠性的方法。 工厂设备数据可以提供有关设备性能、效率、健康状况和生产状况的…

OS 段页结合的实际内存管理

虚拟内存承接段和页,从用户角度,虚拟内存提供段,从硬件角度,虚拟内存把段打散映射到页 先基于段的翻译,再基于页的翻译 p是pcb跟着进程换,64M一个段,set base就是建段表 因为每个进程虚拟地址…

Java智慧工地源码 智慧工地APP源码

Java智慧工地源码 智慧工地APP源码 系统定义: 智慧工地信息化管理平台是依托计算机信息、网络通讯、物联网、系统集成及云计算技术,通过数据采集、信息动态交互、智能分析,建立起来的一套集成的项目建设综合管理系统。实现项目管理信息化、网…

51单片机项目(8)——基于51单片机的DS1302时钟系统

本次做的设计,是利用DS1302时钟芯片,做了一个时钟,并且将实时时间通过串口发送到上位机进行显示。系统运行如下:(protues文件和相关keil代码会在文章最后给出!!!) DS1302…

使用 THREE.js 进行边界体积碰撞检测

推荐:使用 NSDT场景编辑器 快速搭建3D应用场景 使用 Box3 和 Sphere 三.js具有表示数学体积和形状的对象 - 对于3D AABB和边界球体,我们可以使用Box3和Sphere对象。实例化后,它们具有可用于针对其他卷进行交集测试的方法。 实例化盒子 要创…

zabbix 部署

1.zabbix简介 Zabbix 软件能够监控众多网络参数和服务器的健康度、完整性。Zabbix 使用灵活的告警机制,允许用 户为几乎任何事件配置基于邮件的告警。这样用户可以快速响应服务器问题。Zabbix 基于存储的数据 提供出色的报表和数据可视化功能。这些功能使得 Zabbix…

Cmake qt ,vtkDataArray.cxx.obj: File too big

解决方法: Qt4 在pro 加入“QMAKE_CXXFLAGS -BigObj” 可以解决 Qt5 在网上用“-Wa,-mbig-obj” 不能解决,最后通过“QMAKE_CXXFLAGS -Ofast -flto”解决问题。 Qt4 在pro 加入“QMAKE_CXXFLAGS -BigObj” 可以解决Qt5 在网上用“-Wa,-mbig-obj” …

aop中获取@PathVariable参数

1.controller中的声明 2.aop中获取 RequestAttributes attributes RequestContextHolder.getRequestAttributes(); ServletRequestAttributes servletRequestAttributes (ServletRequestAttributes)attributes; HttpServletRequest request servletRequestAttributes.getReq…

漏洞修复:在应用程序中发现不必要的 Http 响应头

描述 blablabla描述,一般是在返回的响应表头中出现了Server键值对,那我们要做的就是移除它,解决方案中提供了nginx的解决方案 解决方案 第一种解决方案 当前解决方案会隐藏nginx的版本号,但还是会返回nginx字样,如…

WordPress关注公众号可见内容插件源码

Wordpress公众号引流工具——关注公众号可见内容插件推荐 通过关注微信公众号,获取随机验证码从而获得隐藏文本的访问权限。 插件特点 隐藏内容扫码关注获取验证码 可以作为引流公众号 支持无必须API接口,无备案域名也可以 自定义验证接口URL 自定…

每天一道动态规划之第四天

一、与字符串相关的动态规划 1.1题目 给定一个字符串str,给定一个字符串类型的数组arr,出现的字符都是小写英文arr每一个字符串,代表一张贴纸,你可以把单个字符剪开使用,目的是拼出str来返回需要至少多少张贴纸可以完…

vue第1篇前端的发展历史

一 vue的发展历史 1.1 vue vue是一个渐进式的javascript框架,Vue 的核心库只关注视图层,方便与第三方库或既有项目整合。 1.2 前端知识核心快捷汇总 Soc原则:关注点分离原则 HTML CSS JS : 视图 : 刷新后端提供的数据展示…