目录
一:加载数据
二:提取特征数据
三:提取标签数据
四:数据划分
一:加载数据
加载数据,查看数据特征
from sklearn.datasets import load_iris
# 1 加载数据 鸢尾花load_iris
iris_datasets = load_iris()
print(iris_datasets, type(iris_datasets))
{'data': array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.2],
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5. , 3.4, 1.5, 0.2],
[4.4, 2.9, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.1],
[5.4, 3.7, 1.5, 0.2],
[4.8, 3.4, 1.6, 0.2],
[4.8, 3. , 1.4, 0.1],
[4.3, 3. , 1.1, 0.1],
[5.8, 4. , 1.2, 0.2],
[5.7, 4.4, 1.5, 0.4],
[5.4, 3.9, 1.3, 0.4],
[5.1, 3.5, 1.4, 0.3],
[5.7, 3.8, 1.7, 0.3],
[5.1, 3.8, 1.5, 0.3],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.7, 1.5, 0.4],
[4.6, 3.6, 1. , 0.2],
[5.1, 3.3, 1.7, 0.5],
[4.8, 3.4, 1.9, 0.2],
[5. , 3. , 1.6, 0.2],
[5. , 3.4, 1.6, 0.4],
[5.2, 3.5, 1.5, 0.2],
[5.2, 3.4, 1.4, 0.2],
[4.7, 3.2, 1.6, 0.2],
[4.8, 3.1, 1.6, 0.2],
[5.4, 3.4, 1.5, 0.4],
[5.2, 4.1, 1.5, 0.1],
[5.5, 4.2, 1.4, 0.2],
[4.9, 3.1, 1.5, 0.2],
[5. , 3.2, 1.2, 0.2],
[5.5, 3.5, 1.3, 0.2],
[4.9, 3.6, 1.4, 0.1],
[4.4, 3. , 1.3, 0.2],
[5.1, 3.4, 1.5, 0.2],
[5. , 3.5, 1.3, 0.3],
[4.5, 2.3, 1.3, 0.3],
[4.4, 3.2, 1.3, 0.2],
[5. , 3.5, 1.6, 0.6],
[5.1, 3.8, 1.9, 0.4],
[4.8, 3. , 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
[4.6, 3.2, 1.4, 0.2],
[5.3, 3.7, 1.5, 0.2],
[5. , 3.3, 1.4, 0.2],
[7. , 3.2, 4.7, 1.4],
[6.4, 3.2, 4.5, 1.5],
[6.9, 3.1, 4.9, 1.5],
[5.5, 2.3, 4. , 1.3],
[6.5, 2.8, 4.6, 1.5],
[5.7, 2.8, 4.5, 1.3],
[6.3, 3.3, 4.7, 1.6],
[4.9, 2.4, 3.3, 1. ],
[6.6, 2.9, 4.6, 1.3],
[5.2, 2.7, 3.9, 1.4],
[5. , 2. , 3.5, 1. ],
[5.9, 3. , 4.2, 1.5],
[6. , 2.2, 4. , 1. ],
[6.1, 2.9, 4.7, 1.4],
[5.6, 2.9, 3.6, 1.3],
[6.7, 3.1, 4.4, 1.4],
[5.6, 3. , 4.5, 1.5],
[5.8, 2.7, 4.1, 1. ],
[6.2, 2.2, 4.5, 1.5],
[5.6, 2.5, 3.9, 1.1],
[5.9, 3.2, 4.8, 1.8],
[6.1, 2.8, 4. , 1.3],
[6.3, 2.5, 4.9, 1.5],
[6.1, 2.8, 4.7, 1.2],
[6.4, 2.9, 4.3, 1.3],
[6.6, 3. , 4.4, 1.4],
[6.8, 2.8, 4.8, 1.4],
[6.7, 3. , 5. , 1.7],
[6. , 2.9, 4.5, 1.5],
[5.7, 2.6, 3.5, 1. ],
[5.5, 2.4, 3.8, 1.1],
[5.5, 2.4, 3.7, 1. ],
[5.8, 2.7, 3.9, 1.2],
[6. , 2.7, 5.1, 1.6],
[5.4, 3. , 4.5, 1.5],
[6. , 3.4, 4.5, 1.6],
[6.7, 3.1, 4.7, 1.5],
[6.3, 2.3, 4.4, 1.3],
[5.6, 3. , 4.1, 1.3],
[5.5, 2.5, 4. , 1.3],
[5.5, 2.6, 4.4, 1.2],
[6.1, 3. , 4.6, 1.4],
[5.8, 2.6, 4. , 1.2],
[5. , 2.3, 3.3, 1. ],
[5.6, 2.7, 4.2, 1.3],
[5.7, 3. , 4.2, 1.2],
[5.7, 2.9, 4.2, 1.3],
[6.2, 2.9, 4.3, 1.3],
[5.1, 2.5, 3. , 1.1],
[5.7, 2.8, 4.1, 1.3],
[6.3, 3.3, 6. , 2.5],
[5.8, 2.7, 5.1, 1.9],
[7.1, 3. , 5.9, 2.1],
[6.3, 2.9, 5.6, 1.8],
[6.5, 3. , 5.8, 2.2],
[7.6, 3. , 6.6, 2.1],
[4.9, 2.5, 4.5, 1.7],
[7.3, 2.9, 6.3, 1.8],
[6.7, 2.5, 5.8, 1.8],
[7.2, 3.6, 6.1, 2.5],
[6.5, 3.2, 5.1, 2. ],
[6.4, 2.7, 5.3, 1.9],
[6.8, 3. , 5.5, 2.1],
[5.7, 2.5, 5. , 2. ],
[5.8, 2.8, 5.1, 2.4],
[6.4, 3.2, 5.3, 2.3],
[6.5, 3. , 5.5, 1.8],
[7.7, 3.8, 6.7, 2.2],
[7.7, 2.6, 6.9, 2.3],
[6. , 2.2, 5. , 1.5],
[6.9, 3.2, 5.7, 2.3],
[5.6, 2.8, 4.9, 2. ],
[7.7, 2.8, 6.7, 2. ],
[6.3, 2.7, 4.9, 1.8],
[6.7, 3.3, 5.7, 2.1],
[7.2, 3.2, 6. , 1.8],
[6.2, 2.8, 4.8, 1.8],
[6.1, 3. , 4.9, 1.8],
[6.4, 2.8, 5.6, 2.1],
[7.2, 3. , 5.8, 1.6],
[7.4, 2.8, 6.1, 1.9],
[7.9, 3.8, 6.4, 2. ],
[6.4, 2.8, 5.6, 2.2],
[6.3, 2.8, 5.1, 1.5],
[6.1, 2.6, 5.6, 1.4],
[7.7, 3. , 6.1, 2.3],
[6.3, 3.4, 5.6, 2.4],
[6.4, 3.1, 5.5, 1.8],
[6. , 3. , 4.8, 1.8],
[6.9, 3.1, 5.4, 2.1],
[6.7, 3.1, 5.6, 2.4],
[6.9, 3.1, 5.1, 2.3],
[5.8, 2.7, 5.1, 1.9],
[6.8, 3.2, 5.9, 2.3],
[6.7, 3.3, 5.7, 2.5],
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]]), 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]), 'frame': None, 'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'), 'DESCR': '.. _iris_dataset:\n\nIris plants dataset\n--------------------\n\n**Data Set Characteristics:**\n\n :Number of Instances: 150 (50 in each of three classes)\n :Number of Attributes: 4 numeric, predictive attributes and the class\n :Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - petal width in cm\n - class:\n - Iris-Setosa\n - Iris-Versicolour\n - Iris-Virginica\n \n :Summary Statistics:\n\n ============== ==== ==== ======= ===== ====================\n Min Max Mean SD Class Correlation\n ============== ==== ==== ======= ===== ====================\n sepal length: 4.3 7.9 5.84 0.83 0.7826\n sepal width: 2.0 4.4 3.05 0.43 -0.4194\n petal length: 1.0 6.9 3.76 1.76 0.9490 (high!)\n petal width: 0.1 2.5 1.20 0.76 0.9565 (high!)\n ============== ==== ==== ======= ===== ====================\n\n :Missing Attribute Values: None\n :Class Distribution: 33.3% for each of 3 classes.\n :Creator: R.A. Fisher\n :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n :Date: July, 1988\n\nThe famous Iris database, first used by Sir R.A. Fisher. The dataset is taken\nfrom Fisher\'s paper. Note that it\'s the same as in R, but not as in the UCI\nMachine Learning Repository, which has two wrong data points.\n\nThis is perhaps the best known database to be found in the\npattern recognition literature. Fisher\'s paper is a classic in the field and\nis referenced frequently to this day. (See Duda & Hart, for example.) The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant. One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\n.. topic:: References\n\n - Fisher, R.A. "The use of multiple measurements in taxonomic problems"\n Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n Mathematical Statistics" (John Wiley, NY, 1950).\n - Duda, R.O., & Hart, P.E. (1973) Pattern Classification and Scene Analysis.\n (Q327.D83) John Wiley & Sons. ISBN 0-471-22361-1. See page 218.\n - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n Structure and Classification Rule for Recognition in Partially Exposed\n Environments". IEEE Transactions on Pattern Analysis and Machine\n Intelligence, Vol. PAMI-2, No. 1, 67-71.\n - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule". IEEE Transactions\n on Information Theory, May 1972, 431-433.\n - See also: 1988 MLC Proceedings, 54-64. Cheeseman et al"s AUTOCLASS II\n conceptual clustering system finds 3 classes in the data.\n - Many, many more ...', 'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'], 'filename': 'iris.csv', 'data_module': 'sklearn.datasets.data'} <class 'sklearn.utils.Bunch'>
分析数据
key:data--数据 target--目标
三种鸢尾花名字:target_names array(['setosa', 'versicolor', 'virginica'] [0 1 2分别表示3种鸢尾] 【标签数据 3分类】
三个种类鸢尾花每一种有50:Number of Instances: 150 (50 in each of three classes)
一共有4种属性:Number of Attributes: 4 numeric, predictive attributes and the class [每一行数据都由4个构成,如 [5. , 3.4, 1.5, 0.2]] 【通过4种属性,分清楚3种鸢尾花】
属性的信息:Attribute Information:\n - sepal length in cm\n - sepal width in cm\n - petal length in cm\n - petal width in cm [花萼sepal的长和花萼sepal的宽、花瓣petal的长和花瓣petal的宽]
'feature_names': ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] 【特征数据 4属性】
二:提取特征数据
from sklearn.datasets import load_iris
# 1 加载数据 鸢尾花load_iris
iris_datasets = load_iris()
# 特征数据
iris_data = iris_datasets['data']
print(iris_data, type(iris_data), len(iris_data), iris_data.shape)
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]] <class 'numpy.ndarray'> 150 (150, 4)
类型:numpy.ndarray
长度:150
形状:150行4列
三:提取标签数据
from sklearn.datasets import load_iris
# 1 加载数据 鸢尾花load_iris
iris_datasets = load_iris()
# 标签数据
iris_target = iris_datasets['target']
print(iris_target, type(iris_target))
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2] <class 'numpy.ndarray'>
一维的ndarray
共150数据
前50特征数据,标签都是0
中间50特征数据,标签都是1
后50特征数据,标签都是2
四:数据划分
数据划分 训练集+测试集
训练集用于模型训练;测试集用于模型测试
数据打乱 (标签和特征要一起打乱)
数据分割,如下
from sklearn.model_selection import train_test_split
参数分析
test_size:测试集比重
train_size:训练集比重
random_state:随机种子
shuffle:打乱顺序 默认True打乱
返回: X--特征 Y--标签 train训练 test测试
X_train, 特征训练
X_test, 特征测试
y_train, 标签训练
y_test 标签测试
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 1 加载数据 鸢尾花load_iris
iris_datasets = load_iris()
# 特征数据
iris_data = iris_datasets['data']
# 标签数据
iris_target = iris_datasets['target']
# 顺序打乱
X_train, X_test, y_train, y_test = train_test_split(iris_data, iris_target, test_size=0.2, random_state=6)
print(X_train, X_test, y_train, y_test)
[[4.8 3. 1.4 0.3]
[5.2 2.7 3.9 1.4]
[5.4 3.9 1.3 0.4]
[4.3 3. 1.1 0.1]
[6.3 2.8 5.1 1.5]
[6.4 2.8 5.6 2.1]
[5.6 2.9 3.6 1.3]
[6.3 2.5 5. 1.9]
[5.7 3. 4.2 1.2]
[5. 3.3 1.4 0.2]
[5.1 3.5 1.4 0.3]
[6.3 2.9 5.6 1.8]
[6.1 2.8 4. 1.3]
[5.9 3. 4.2 1.5]
[5.1 3.8 1.6 0.2]
[4.8 3. 1.4 0.1]
[6.9 3.1 4.9 1.5]
[5.2 3.5 1.5 0.2]
[4.9 3.1 1.5 0.2]
[6.5 2.8 4.6 1.5]
[7.7 2.6 6.9 2.3]
[7.7 3.8 6.7 2.2]
[5.6 2.8 4.9 2. ]
[4.6 3.4 1.4 0.3]
[6.4 2.7 5.3 1.9]
[5.7 3.8 1.7 0.3]
[4.4 3. 1.3 0.2]
[5.4 3.4 1.7 0.2]
[6.6 2.9 4.6 1.3]
[6.7 2.5 5.8 1.8]
[6. 2.7 5.1 1.6]
[5. 2. 3.5 1. ]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.6 2.7 4.2 1.3]
[5.6 3. 4.1 1.3]
[4.6 3.1 1.5 0.2]
[5.8 2.7 5.1 1.9]
[5.8 4. 1.2 0.2]
[4.7 3.2 1.6 0.2]
[5.5 2.5 4. 1.3]
[5.4 3. 4.5 1.5]
[5.8 2.7 5.1 1.9]
[6.4 2.8 5.6 2.2]
[6.5 3. 5.2 2. ]
[6.7 3.1 4.4 1.4]
[6.1 2.8 4.7 1.2]
[6.9 3.1 5.4 2.1]
[7.2 3. 5.8 1.6]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[4.9 3.1 1.5 0.1]
[6.5 3. 5.8 2.2]
[6.8 3. 5.5 2.1]
[5.1 3.7 1.5 0.4]
[4.6 3.2 1.4 0.2]
[5.7 2.5 5. 2. ]
[7.9 3.8 6.4 2. ]
[6.1 3. 4.6 1.4]
[6.3 3.4 5.6 2.4]
[6.8 2.8 4.8 1.4]
[5.5 4.2 1.4 0.2]
[6.3 3.3 4.7 1.6]
[6.7 3.1 5.6 2.4]
[5.5 3.5 1.3 0.2]
[5. 3.4 1.5 0.2]
[7.3 2.9 6.3 1.8]
[4.4 3.2 1.3 0.2]
[5.3 3.7 1.5 0.2]
[4.8 3.4 1.9 0.2]
[4.5 2.3 1.3 0.3]
[4.6 3.6 1. 0.2]
[5. 3.2 1.2 0.2]
[5.8 2.7 3.9 1.2]
[6.9 3.1 5.1 2.3]
[4.8 3.4 1.6 0.2]
[7.7 2.8 6.7 2. ]
[5.8 2.7 4.1 1. ]
[5.4 3.7 1.5 0.2]
[6.7 3.3 5.7 2.1]
[5.5 2.6 4.4 1.2]
[6.7 3. 5.2 2.3]
[5.9 3.2 4.8 1.8]
[5.6 2.5 3.9 1.1]
[5. 3.5 1.3 0.3]
[6. 2.9 4.5 1.5]
[5.9 3. 5.1 1.8]
[7. 3.2 4.7 1.4]
[5.4 3.9 1.7 0.4]
[4.9 2.4 3.3 1. ]
[5. 3.5 1.6 0.6]
[5.2 3.4 1.4 0.2]
[6. 3.4 4.5 1.6]
[5.1 3.8 1.5 0.3]
[6.1 2.9 4.7 1.4]
[6.2 2.8 4.8 1.8]
[5.6 3. 4.5 1.5]
[6.7 3.3 5.7 2.5]
[6.8 3.2 5.9 2.3]
[5.8 2.8 5.1 2.4]
[6.7 3.1 4.7 1.5]
[5.7 4.4 1.5 0.4]
[7.2 3.2 6. 1.8]
[5.4 3.4 1.5 0.4]
[7.4 2.8 6.1 1.9]
[4.4 2.9 1.4 0.2]
[6.2 2.2 4.5 1.5]
[6.5 3.2 5.1 2. ]
[5. 3.4 1.6 0.4]
[6.7 3. 5. 1.7]
[6.6 3. 4.4 1.4]
[4.9 3. 1.4 0.2]
[5. 3. 1.6 0.2]
[6. 2.2 4. 1. ]
[5.5 2.4 3.8 1.1]
[6.2 3.4 5.4 2.3]
[5.7 2.6 3.5 1. ]
[7.2 3.6 6.1 2.5]
[4.9 2.5 4.5 1.7]
[6. 3. 4.8 1.8]] [[5. 3.6 1.4 0.2]
[6.5 3. 5.5 1.8]
[4.7 3.2 1.3 0.2]
[5.1 3.3 1.7 0.5]
[6.3 2.7 4.9 1.8]
[5.7 2.9 4.2 1.3]
[6.1 2.6 5.6 1.4]
[5.1 3.4 1.5 0.2]
[6.4 3.1 5.5 1.8]
[5.5 2.3 4. 1.3]
[6.1 3. 4.9 1.8]
[5.5 2.4 3.7 1. ]
[6.4 3.2 5.3 2.3]
[7.7 3. 6.1 2.3]
[6.4 2.9 4.3 1.3]
[6. 2.2 5. 1.5]
[7.6 3. 6.6 2.1]
[6.4 3.2 4.5 1.5]
[5.8 2.6 4. 1.2]
[5.2 4.1 1.5 0.1]
[4.9 3.6 1.4 0.1]
[6.9 3.2 5.7 2.3]
[5.1 3.8 1.9 0.4]
[5.1 3.5 1.4 0.2]
[5.7 2.8 4.5 1.3]
[6.3 2.5 4.9 1.5]
[6.3 2.3 4.4 1.3]
[7.1 3. 5.9 2.1]
[4.8 3.1 1.6 0.2]
[5. 2.3 3.3 1. ]] [0 1 0 0 2 2 1 2 1 0 0 2 1 1 0 0 1 0 0 1 2 2 2 0 2 0 0 0 1 2 1 1 1 2 1 1 0
2 0 0 1 1 2 2 2 1 1 2 2 1 1 0 2 2 0 0 2 2 1 2 1 0 1 2 0 0 2 0 0 0 0 0 0 1
2 0 2 1 0 2 1 2 1 1 0 1 2 1 0 1 0 0 1 0 1 2 1 2 2 2 1 0 2 0 2 0 1 2 0 1 1
0 0 1 1 2 1 2 2 2] [0 2 0 0 2 1 2 0 2 1 2 1 2 2 1 2 2 1 1 0 0 2 0 0 1 1 1 2 0 1]
划分为 120(训练集) + 30(测试集) (根据前面设置的比重划分)