参考:Gurobi 官方资源
设施选址(Facility Location)
1.背景介绍
设施选址问题在许多工业领域如物流,通信等都有应用,在本案例中展示如何解决设施选址问题,决策出仓库的数量和地点,为一些超市供应。求解思路:问题建模成混合整数规划问题,用python调用Gurobi求解器实现。
设施选址问题也称为选址分析(location analysis),是运筹优化领域的一个重要分支,要求选出设施的最佳位置,从而减小运输成本,同时考虑一些其它因素,如安全(避免在靠近居民地的地方存储有害物质)和竞争者的设施位置。
设施选址问题在很多领域都有应用,对于供应链和物流管理,这个问题可以用来找到商店,工厂和仓库的最佳位置,其它应用如公共策略(在城市中部署警局),通信(网络中的手机信号塔),甚至是粒子物理学(排斥电荷之间的间隔距离),天然气输送装备的选址等。最后,可以将设施点位置问题应用于聚类分析。
2.问题描述
一个大型的超市连锁店想要为它的一些超市修建仓库,超市的位置都已知,但是仓库的位置还没决定。
仓库选址有几个候选地,需要决定出修建几个仓库和确定这些仓库的位置。
修建仓库越多,就能减少卡车从仓库到超市的运输距离,因此减少运输成本,但是开设一个仓库有一个固定成本。
优化目标是最小化总成本=开始仓库固定成本+仓库到超市运输成本。
3.MIP模型
建立数学规划模型用gurobi求解,一个数学优化模型有5个部分:
- 集合和索引(Sets and indices)
- 参数(Parameters)
- 决策变量(Decision variables)
- 目标函数(Objective function(s))
- 约束条件(Constraints)
接下来为设施选址问题构建MIP模型
(1)集合和索引
i ∈ I i \in I i∈I: 超市(顾客)位置的索引和集合.
j ∈ J j \in J j∈J: 候选仓库(设施)位置的索引和集合.
(2)参数
f j ∈ R + f_{j} \in \mathbb{R}^+ fj∈R+: 修建设施 j ∈ J j \in J j∈J 的固定成本.
d i , j ∈ R + d_{i,j} \in \mathbb{R}^+ di,j∈R+: 设施 j ∈ J j \in J j∈J 和客户 i ∈ I i \in I i∈I 的距离.
c i , j ∈ R + c_{i,j} \in \mathbb{R}^+ ci,j∈R+: 候选设施地点 j ∈ J j \in J j∈J 和客户点 i ∈ I i \in I i∈I 的运输成本. 假设成本和距离成比例. 因此 c i , j = α ⋅ d i , j c_{i,j} = \alpha \cdot d_{i,j} ci,j=α⋅di,j, α \alpha α 是单位运输成本.
(3)决策变量
s e l e c t j ∈ { 0 , 1 } select_{j} \in \{0, 1 \} selectj∈{0,1}: 如果在候选设施点 j ∈ J j \in J j∈J 修建,值为1; 否则为0
0 ≤ a s s i g n i , j ≤ 1 0 \leq assign_{i,j} \leq 1 0≤assigni,j≤1: 非负连续变量,表明客户 i ∈ I i \in I i∈I 从设施 j ∈ J j \in J j∈J 接收需求的比例.
(4)目标函数
(5)约束条件
4.python调用gurobi实现
本例中考虑2个超市和9个候选仓库,每个超市的位置坐标如下
Coordinates | |
---|---|
Supermarket 1 | (0,1.5) |
Supermarket 2 | (2.5,1.2) |
下面的表格是候选仓库的坐标和修建固定成本,单位millions GBP
coordinates | fixed cost | |
---|---|---|
Warehouse 1 | (0,0) | 3 |
Warehouse 2 | (0,1) | 2 |
Warehouse 3 | (0,2) | 3 |
Warehouse 4 | (1,0) | 1 |
Warehouse 5 | (1,1) | 3 |
Warehouse 6 | (1,2) | 3 |
Warehouse 7 | (2,0) | 4 |
Warehouse 8 | (2,1) | 3 |
Warehouse 9 | (2,2) | 2 |
每mile的运输成本是1 million GBP
现在导入gurobi和其它python库,初始化给定数据的数据结构
from itertools import product
from math import sqrt
import gurobipy as gp
from gurobipy import GRB
customers = [(0,1.5), (2.5,1.2)]
facilities = [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)]
setup_cost = [3,2,3,1,3,3,4,3,2]
cost_per_mile = 1
(1)预处理
定义一个函数,用于计算每个设施和客户之间的欧式距离,获取MIP模型需要的关键参数
# 计算两个地方的欧式距离
def compute_distance(loc1, loc2):
dx = loc1[0] - loc2[0]
dy = loc1[1] - loc2[1]
return sqrt(dx*dx + dy*dy)
num_facilities = len(facilities)
num_customers = len(customers)
cartesian_prod = list(product(range(num_customers), range(num_facilities)))
# 每对客户和设施的运输成本
shipping_cost = {(c,f):cost_per_mile * compute_distance(customers[c], facilities[f])
for c,f in cartesian_prod}
shipping_cost
{(0, 0): 1.5,
(0, 1): 0.5,
(0, 2): 0.5,
(0, 3): 1.8027756377319946,
(0, 4): 1.118033988749895,
(0, 5): 1.118033988749895,
(0, 6): 2.5,
(0, 7): 2.0615528128088303,
(0, 8): 2.0615528128088303,
(1, 0): 2.773084924772409,
(1, 1): 2.5079872407968904,
(1, 2): 2.6248809496813377,
(1, 3): 1.9209372712298547,
(1, 4): 1.5132745950421556,
(1, 5): 1.7,
(1, 6): 1.3,
(1, 7): 0.5385164807134504,
(1, 8): 0.9433981132056605}
(2)模型部署
现在定义设施选址问题的MIP模型,包括决策变量,约束和目标函数。然后开始优化过程,Gurobi找到能最小化总成本的修建方案
# 模型
m = gp.Model('facility_location')
# 两个决策变量
select = m.addVars(num_facilities, vtype=GRB.BINARY, name='select')
assign = m.addVars(cartesian_prod, ub=1, vtype=GRB.CONTINUOUS, name='assign')
# 两个约束条件
m.addConstrs((assign[c,f] <= select[f] for c,f in cartesian_prod), name='Setup2ship')
m.addConstrs((gp.quicksum(assign[c,f] for f in range(num_facilities)) == 1 for c in range(num_customers)),name='demand')
# 目标函数
m.setObjective(select.prod(setup_cost) + assign.prod(shipping_cost), GRB.MINIMIZE)
# 优化
m.optimize()
Set parameter Username
Academic license - for non-commercial use only - expires 2023-10-24
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (mac64[rosetta2])
Thread count: 8 physical cores, 8 logical processors, using up to 8 threads
Optimize a model with 20 rows, 27 columns and 54 nonzeros
Model fingerprint: 0x0939f503
Variable types: 18 continuous, 9 integer (9 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [5e-01, 4e+00]
Bounds range [1e+00, 1e+00]
RHS range [1e+00, 1e+00]
Presolve time: 0.01s
Presolved: 20 rows, 27 columns, 54 nonzeros
Variable types: 18 continuous, 9 integer (9 binary)
Found heuristic solution: objective 6.0385165
Root relaxation: objective 4.723713e+00, 15 iterations, 0.00 seconds (0.00 work units)
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 4.7237129 4.72371 0.00% - 0s
Explored 1 nodes (15 simplex iterations) in 0.03 seconds (0.00 work units)
Thread count was 8 (of 8 available processors)
Solution count 2: 4.72371 6.03852
Optimal solution found (tolerance 1.00e-04)
Best objective 4.723712908962e+00, best bound 4.723712908962e+00, gap 0.0000%
5.结果分析
优化模型结果显示最小成本是4.72 million GBP
(1)仓库修建计划
接下来看一下仓库修建选址决策:在位置4修建一个仓库
for facility in select.keys():
if (abs(select[facility].x) > 1e-6):
print(f"\n Build a warehouse at location {facility + 1}.")
Build a warehouse at location 4.
(2)运输计划
运输计划表明了从每个修建的设施运送到每个客户的比例:两个超市都由仓库4供货
for customer, facility in assign.keys():
if (abs(assign[customer, facility].x)) > 1e-6:
print(f"\n Supermarket {customer + 1} receives {round(100*assign[customer, facility].x, 2)} % of its demand from Warehouse {facility + 1} .")
Supermarket 1 receives 100.0 % of its demand from Warehouse 4 .
Supermarket 2 receives 100.0 % of its demand from Warehouse 4 .