docker高级(redis集群三主三从)

news2024/12/25 0:48:05

1. 新建6个docker容器redis实例

docker run -d --name redis-node-1 --net host --privileged=true -v /redis/share/redis-node-1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381
 
docker run -d --name redis-node-2 --net host --privileged=true -v /redis/share/redis-node-2:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6382
 
docker run -d --name redis-node-3 --net host --privileged=true -v /redis/share/redis-node-3:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6383
 
docker run -d --name redis-node-4 --net host --privileged=true -v /redis/share/redis-node-4:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6384
 
docker run -d --name redis-node-5 --net host --privileged=true -v /redis/share/redis-node-5:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6385
 
docker run -d --name redis-node-6 --net host --privileged=true -v /redis/share/redis-node-6:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6386

·命令分步解释
docker run
创建并运行docker容器实例
–name redis-node-6
容器名字
–net host
使用宿主机的IP和端口,默认
–privileged=true
获取宿主机root用户权限
-v /redis/share/redis-node-6:/data
容器卷,宿主机地址:docker内部地址
redis:6.0.8
redis镜像和版本号
–cluster-enabled yes
开启redis集群
–appendonly yes
开启持久化
–port 6386
redis端口号

2、进入容器redis-node-1并为6台机器构建集群关系

docker exec -it redis-node-1 /bin/bash

构建主从关系
//注意,进入docker容器后才能执行一下命令,且注意自己的真实IP地址
–cluster-replicas 1 表示为每个master创建一个slave节点

redis-cli --cluster create 192.168.111.147:6381 192.168.111.147:6382 192.168.111.147:6383 192.168.111.147:6384 192.168.111.147:6385 192.168.111.147:6386 --cluster-replicas 1

执行过程中输入yes,回车

在这里插入图片描述
·一切OK的话,3主3从搞定

·链接进入6381作为切入点,查看集群状态、查看节点状态

redis-cli -p 6381

cluster info

cluster nodes

在这里插入图片描述
在这里插入图片描述

3、主从容错切换迁移案例

·数据读写存储
·启动6机构成的集群并通过exec进入
·对6381新增两个key
·防止路由失效加参数-c并新增两个key

set name orange

在这里插入图片描述
加入参数-c,优化路由

#退出
exit
#-c登录
redis-cli -p 6381 -c

#插入数据
set k1 v1

·查看集群信息

redis-cli --cluster check 192.168.111.147:6381

在这里插入图片描述

·容错切换迁移
·主6381和从机切换,先停止主机6381
·6381主机停了,对应的真实从机上位
·6381作为1号主机分配的从机以实际情况为准,具体是几号机器就是几号
·再次查看集群信息

#停止redis-node1
docker stop redis-node-1

#进入reids-node2容器
docker exec -it redis-node2 /bin/bash

#查看集群
redis-cli -p 6382 -c

cluster nodes

前后对比
在这里插入图片描述
6381宕机了,6384上位成为了新的master。
每次案例下面挂的从机以实际情况为准,具体是几号机器就是几号

先还原之前的3主3从

docker start redis-node-1

docker stop redis-node-4

docker start redis-node-4

中间需要等待一会儿,docker集群重新响应。

4、主从扩容案例

·新建6387、6388两个节点+新建后启动+查看是否8节点

docker run -d --name redis-node-7 --net host --privileged=true -v /redis/share/redis-node-7:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6387
docker run -d --name redis-node-8 --net host --privileged=true -v /redis/share/redis-node-8:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6388

·进入6387容器实例内部

docker exec -it redis-node-7 /bin/bash

将新增的6387节点(空槽号)作为master节点加入原集群

将新增的6387作为master节点加入集群
redis-cli --cluster add-node 自己实际IP地址:6387 自己实际IP地址:6381
6387 就是将要作为master新增节点
6381 就是原来集群节点里面的领路人,相当于6387拜拜6381的码头从而找到组织加入集群

redis-cli --cluster add-node 192.168.5.20:6387  192.168.5.20:6381

·检查集群情况第1次

redis-cli --cluster check 192.168.2.20:6381

在这里插入图片描述
·重新分派槽号
redis-cli --cluster reshard IP地址:端口号

redis-cli --cluster reshard 192.168.5.20:6381

在这里插入图片描述
·检查集群情况第2次

redis-cli --cluster check 192.168.2.20:6381

在这里插入图片描述
·槽号分派说明
为什么6387是3个新的区间,以前的还是连续?
重新分配成本太高,所以前3家各自匀出来一部分,从6381/6382/6383三个旧节点分别匀出1364个坑位给新节点6387
在这里插入图片描述
·为主节点6387分配从节点6388
命令:redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID

redis-cli --cluster add-node 192.168.5.20:6388 192.168.5.20:6387  --cluster-slave  --cluster-master-id
e4781f644d4a4e4d4b4d107157b9ba8144631451

e4781f644d4a4e4d4b4d107157b9ba8144631451-------这个是6387的编号,按照自己实际情况
在这里插入图片描述
·检查集群情况第3次

redis-cli --cluster check 192.168.111.147:6382

在这里插入图片描述

5、主从缩容案例

·目的:6387和6388下线
·检查集群情况1获得6388的节点ID

·将6388删除 从集群中将4号从节点6388删除

命令:redis-cli --cluster del-node ip:从机端口 从机6388节点ID

redis-cli --cluster del-node 192.168.111.147:6388 5d149074b7e57b802287d1797a874ed7a1a284a8

将6387的槽号清空,重新分配,本例将清出来的槽号都给6381

redis-cli --cluster reshard 192.168.111.147:6381

redis-cli --cluster reshard 10.0.16.6:6381
检查集群情况第二次
在这里插入图片描述

·将6387删除
命令:redis-cli --cluster del-node ip:端口 6387节点ID

redis-cli --cluster del-node 192.168.111.147:6387 e4781f644d4a4e4d4b4d107157b9ba8144631451


#检查集群
redis-cli --cluster check 192.168.111.147:6381

没有了6387

6、设置redis集群密码

登录redis
docker exec -it redis-node-1 /bin/bash
redis-cli -p 6381 -c
#设置密码
config set requirepass 'password'  

#设置从节点连接主节点的密码
config set masterauth 'password'	

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/939888.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

本地化部署ChatGLM2-6B模型

本地化部署ChatGLM2-6B模型 简介硬件需求 环境部署安装Miniconda创建虚拟环境下载模型和源码安装依赖GPU部署CPU部署 运行程序GPU模式CPU模式命令行运行网页版运行API运行 简介 ChatGLM是清华大学开源的方案,中文效果还是很不错的。基于 General Language Model (G…

2023年高教社杯数学建模思路 - 案例:感知机原理剖析及实现

文章目录 1 感知机的直观理解2 感知机的数学角度3 代码实现 4 建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 感知机的直观理解 感知机应该属于机器学习算法中最简单的一种算法,其…

TCP与UDP的区别(什么是三次握手和四次挥手)

目录 一、TCP和UDP是什么 二、TCP和UDP的区别 三、TCP协议三次握手 为什么是三次握手而不是两次握手 ? 在不可靠信道上建立可靠连接会产生什么问题呢? 四、四次挥手 为什么客户端需要等待超时时间? 总结: 我们日常生活中微…

医疗中心管理环境温湿度,这样操作就对了!

随着医疗技术的不断发展,越来越多的医疗设备对于稳定的工作环境要求越来越高,而环境温湿度是影响这些设备性能和可靠性的关键因素之一。 为了确保医疗设备的正常运行和患者的安全,医疗机构越来越倾向于采用精密空调监控系统来维护设备的稳定性…

如何输出高质量软文,媒介盒子教你4大技巧

作为一名软文作者,只有知道软文写作的要求,才能打造一篇成功的软文,以便为企业或产品带来较高的关注度和曝光率,提高企业的知名度和品牌形象。下面就随小编一起来看看吧! 1、吸引眼球的标题 标题是软文写作的灵魂&am…

css-伪类:not实现列表最后一项没有样式

有了&#xff1a;not这个选择符&#xff0c;那么你将可以很好的处理类似这样的场景&#xff1a;假定有个列表&#xff0c;每个列表项都有一条底边线&#xff0c;但是最后一项不需要底边线。 示例&#xff1a; html: <ul><li>111111111111</li><li>21…

传统品牌如何通过3D虚拟数字人定制和动捕设备加速年轻化发展?

步入Z时代&#xff0c;年轻一代消费者的生活方式深受互联网技术和媒介环境影响&#xff0c;对新潮事物感兴趣&#xff0c;消费思维也相对前卫&#xff0c;品牌需要探索契合Z世代的消费观念&#xff0c;寻找新的链接拉近品牌与消费者的距离&#xff0c;而3D虚拟数字人定制可以帮…

900ES1-0100 honeywell 可减少视觉引导应用的整体开发时间

900ES1-0100 honeywell 可减少视觉引导应用的整体开发时间 CV2视觉系统配有高柔性电缆(以太网或USB)。通过将高柔性电缆作为所有CV2视觉系统的标准配置&#xff0c;Epson CV2摄像机可以安装在机器人臂(移动)或固定装置(固定)上。基于向导的校准使机器人到视觉系统的校准变得轻…

内网穿透——搭建私人影音媒体平台

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及&#xff0c;各种各样的使用需求也被开发出来&…

第四讲Java基本语法——数组结构(多维数组)

前言 前面几讲,我们讲了Java基本语法,初学者也能够有一定的入门。本讲,我们也是继续来讲解一下Java另一个基础语法——数组,其实在前面讲解数据类型的时候,我们也有提到数组是引用类型,那今天我们就来分析一下什么是数组,怎么用数组呢? 一、数组是什么 数组是…

软件测试用例经典方法 | 逻辑覆盖测试法及案例【文末赠书】

逻辑覆盖测试法是常用的一类白盒测试方法&#xff0c;其以程序内部逻辑结构为基础&#xff0c;通过对程序逻辑结构的遍历来实现程序测试的覆盖。逻辑覆盖测试法要求测试人员对程序的逻辑结构有清晰的了解。 逻辑覆盖测试法是一系列测试过程的总称&#xff0c;是使测试过程逐渐…

如何做科研--英文文献阅读

以下是截取书中的一段话&#xff0c;这对于所有科研工作者感觉都适用&#xff0c;也能让自己了解自己领域前沿的东西&#xff0c;应该也能提高大家英文阅读能力&#xff0c;一起学习共勉&#xff01; “从1998年在普林斯顿大学任职&#xff0c;到在清华大学当教授&#xff0c;…

需求变化频繁的情况下,如何实施自动化测试

一.通常来说&#xff0c;具备以下3个主要条件才能开展自动化测试工作: 1.需求变动不频繁 自动化测试脚本变化的频率决定了自动化测试的维护成本。如果需求变动过于频繁&#xff0c;那么测试人员就需要根据变动的需求来不断地更新自动化测试用例&#xff0c;从而适应新的功能。…

024:vue中动态添加ref,通过ref更改css

第024个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

【视觉SLAM入门】6.1. (基于直接法的视觉里程计)LK光流法,代码解读, 直接法,特征点法对比,稀疏,半稠密,稠密地图

"刺卵掷地&#xff0c;逐蝇弃笔" 0. 数据集1. 光流法(Optical Flow)1.1. 光流1.2. LK光流法1.3 关键代码&#xff1a;1.4 特点 2. 直接法(Direct Methods)2.1 分类比较2.2 优缺点 前置事项&#xff1a; 特征点耗时&#xff0c;丢弃有用信息&#xff0c;特征缺失&…

vite 配置自动补全文件的后缀名

vite 不建议自动补全&#xff0c;文件的后缀名的 const Home ()>import("/views/Home.vue");文件是必须要加上 .vue 的后缀名的 如果 想要像 webpack 一样的不用写&#xff0c; 可以在vite.config.js中配置如下就可以了

【bug记录】RuntimeError: CUDA error: device-side assert triggered

RuntimeError: CUDA error: device-side assert triggered 我个人使用pytorch lightning时&#xff0c;报错RuntimeError: CUDA error: device-side assert triggered 我个人是因为分类类别数目对不上&#xff0c;但是在gpu上运行是不会提示错误的 解决方案&#xff1a;建议…

kubesphere中部署grafana实现dashboard以PDF方式导出

1&#xff0c;部署grafana-image-renderer 2&#xff0c;部署grafana GF_RENDERING_SERVER_URL http://ip:30323/render #grafana-image-renderer地址 GF_RENDERING_CALLBACK_URL http://ip:32403/ #grafana地址 GF_LOG_FILTERS rend…

【ES】笔记-Promise基本使用

笔记-基本使用 一、初始Promise1. 抽象表达:2. 具体表达:为什么要用 Promise?promise的基本流程 二、fs读取文件三、AJAX请求四、Promise封装fs模块五、util.promisify方法六、Promise封装AJAX操作 一、初始Promise 1. 抽象表达: 1. Promise 是一门新的技术(ES6 规范) 2. Pr…

关于单例模式

单例模式的目的&#xff1a; 单例模式的目的和其他的设计模式的目的都是一样的&#xff0c;都是为了降低对象之间的耦合性&#xff0c;增加代码的可复用性&#xff0c;可维护性和可扩展性。 单例模式&#xff1a; 单例模式是一种常用的设计模式&#xff0c;用简单的言语说&am…