2023年高教社杯数学建模思路 - 案例:感知机原理剖析及实现

news2024/12/25 0:12:07

文章目录

  • 1 感知机的直观理解
    • 2 感知机的数学角度
    • 3 代码实现
  • 4 建模资料

# 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 感知机的直观理解

感知机应该属于机器学习算法中最简单的一种算法,其原理可以看下图:

在这里插入图片描述

比如说我们有一个坐标轴(图中的黑色线),横的为x1轴,竖的x2轴。图中的每一个点都是由(x1,x2)决定的。如果我们将这张图应用在判断零件是否合格上,x1表示零件长度,x2表示零件质量,坐标轴表示零件的均值长度和均值重量,并且蓝色的为合格产品,黄色为劣质产品,需要剔除。那么很显然如果零件的长度和重量都大于均值,说明这个零件是合格的。也就是在第一象限的所有蓝色点。反之如果两项都小于均值,就是劣质的,比如在第三象限的黄色点。

在预测上很简单,拿到一个新的零件,我们测出它的长度x1,质量x2,如果两项都大于均值,说明零件合格。这就是我们人的人工智能。

那么程序怎么知道长度重量都大于均值的零件就是合格的呢?
或者说

它是怎么学会这个规则的呢?
程序拿到手的是当前图里所有点的信息以及标签,也就是说它知道所有样本x的坐标为(x1, x2),同时它属于蓝色或黄色。对于目前手里的这些点,要是能找到一条直线把它们分开就好了,这样我拿到一个新的零件,知道了它的质量和重量,我就可以判断它在线的哪一侧,就可以知道它可能属于好的或坏的零件了。例如图里的黄、蓝、粉三条线,都可以完美地把当前的两种情况划分开。甚至x1坐标轴或x2坐标轴都能成为一个划分直线(这两个直线均能把所有点正确地分开)。

读者也看到了,对于图中的两堆点,我们有无数条直线可以将其划分开,事实上我们不光要能划分当前的点,当新来的点进来是,也要能很好地将其划分,所以哪条线最好呢?

怎样一条直线属于最佳的划分直线?实际上感知机无法找到一条最佳的直线,它找到的可能是图中所有画出来的线,只要能把所有的点都分开就好了。

得出结论:
如果一条直线能够不分错一个点,那就是一条好的直线
进一步来说:

如果我们把所有分错的点和直线的距离求和,让这段求和的举例最小(最好是0,这样就表示没有分错的点了),这条直线就是我们要找的。

2 感知机的数学角度

首先我们确定一下终极目标:甭管找最佳划分直线啥中间乱七八糟的步骤,反正最后生成一个函数f(x),当我们把新的一个数据x扔进函数以后,它会预测告诉我这是蓝的还是黄的,多简单啊。所以我们不要去考虑中间过程,先把结果定了。

在这里插入图片描述

瞧,f(x)不是出来了嘛,sign是啥?wx+b是啥?别着急,我们再看一下sigin函数是什么。

在这里插入图片描述

sign好像很简单,当x大于等于0,sign输出1,否则输出-1。那么往前递归一下,wx+b如果大于等于0,f(x)就等于1,反之f(x)等于-1。

那么wx+b是啥?
它就是那条最优的直线。我们把这个公式放在二维情况下看,二维中的直线是这样定义的:y=ax+b。在二维中,w就是a,b还是b。所以wx+b是一条直线(比如说本文最开始那张图中的蓝线)。如果新的点x在蓝线左侧,那么wx+b<0,再经过sign,最后f输出-1,如果在右侧,输出1。等等,好像有点说不通,把情况等价到二维平面中,y=ax+b,只要点在x轴上方,甭管点在线的左侧右侧,最后结果都是大于0啊,这个值得正负跟线有啥关系?emmm….其实wx+b和ax+b表现直线的形式一样,但是又稍有差别。我们把最前头的图逆时针旋转45度,蓝线是不是变成x轴了?哈哈这样是不是原先蓝线的右侧变成了x轴的上方了?其实感知机在计算wx+b这条线的时候,已经在暗地里进行了转换,使得用于划分的直线变成x轴,左右侧分别为x轴的上方和下方,也就成了正和负。

那么,为啥是wx+b,而不叫ax+b?
在本文中使用零件作为例子,上文使用了长度和重量(x1,x2)来表示一个零件的属性,所以一个二维平面就足够,那么如果零件的品质和色泽也有关系呢?那就得加一个x3表示色泽,样本的属性就变成了(x1,x2,x3),变成三维了。wx+b并不是只用于二维情况,在三维这种情况下,仍然可以使用这个公式。所以wx+b与ax+b只是在二维上近似一致,实际上是不同的东西。在三维中wx+b是啥?我们想象屋子里一个角落有蓝点,一个角落有黄点,还用一条直线的话,显然是不够的,需要一个平面!所以在三维中,wx+b是一个平面!至于为什么,后文会详细说明。四维呢?emmm…好像没法描述是个什么东西可以把四维空间分开,但是对于四维来说,应该会存在一个东西像一把刀一样把四维空间切成两半。能切成两半,应该是一个对于四维来说是个平面的东西,就像对于三维来说切割它的是一个二维的平面,二维来说是一个一维的平面。总之四维中wx+b可以表示为一个相对于四维来说是个平面的东西,然后把四维空间一切为二,我们给它取名叫超平面。由此引申,在高维空间中,wx+b是一个划分超平面,这也就是它正式的名字。

正式来说:
wx+b是一个n维空间中的超平面S,其中w是超平面的法向量,b是超平面的截距,这个超平面将特征空间划分成两部分,位于两部分的点分别被分为正负两类,所以,超平面S称为分离超平面。

细节:

w是超平面的法向量:对于一个平面来说w就是这么定义的,是数学知识,可以谷歌补习一下

b是超平面的截距:可以按照二维中的ax+b理解

特征空间:也就是整个n维空间,样本的每个属性都叫一个特征,特征空间的意思是在这个空间中可以找到样本所有的属性组合

在这里插入图片描述
我们从最初的要求有个f(x),引申到能只输出1和-1的sign(x),再到现在的wx+b,看起来越来越简单了,只要能找到最合适的wx+b,就能完成感知机的搭建了。前文说过,让误分类的点距离和最大化来找这个超平面,首先我们要放出单独计算一个点与超平面之间距离的公式,这样才能将所有的点的距离公式求出来对不?

在这里插入图片描述

先看wx+b,在二维空间中,我们可以认为它是一条直线,同时因为做过转换,整张图旋转后wx+b是x轴,那么所有点到x轴的距离其实就是wx+b的值对不?当然了,考虑到x轴下方的点,得加上绝对值->|wx+b|,求所有误分类点的距离和,也就是求|wx+b|的总和,让它最小化。很简单啊,把w和b等比例缩小就好啦,比如说w改为0.5w,b改为0.5b,线还是那条线,但是值缩小两倍啦!你还不满意?我可以接着缩!缩到0去!所以啊,我们要加点约束,让整个式子除以w的模长。啥意思?就是w不管怎么样,要除以它的单位长度。如果我w和b等比例缩小,那||w||也会等比例缩小,值一动不动,很稳。没有除以模长之前,|wx+b|叫函数间隔,除模长之后叫几何间隔,几何间隔可以认为是物理意义上的实际长度,管你怎么放大缩小,你物理距离就那样,不可能改个数就变。在机器学习中求距离时,通常是使用几何间隔的,否则无法求出解。

在这里插入图片描述
对于误分类的数据,例如实际应该属于蓝色的点(线的右侧,y>0),但实际上预测出来是在左侧(wx+b<0),那就是分错了,结果是负,这时候再加个符号,结果就是正了,再除以w的模长,就是单个误分类的点到超平面的举例。举例总和就是所有误分类的点相加。

上图最后说不考虑除以模长,就变成了函数间隔,为什么可以这么做呢?不考虑wb等比例缩小这件事了吗?上文说的是错的吗?

有一种解释是这样说的:感知机是误分类驱动的算法,它的终极目标是没有误分类的点,如果没有误分类的点,总和距离就变成了0,w和b值怎样都没用。所以几何间隔和函数间隔在感知机的应用上没有差别,为了计算简单,使用函数间隔。

在这里插入图片描述
以上是损失函数的正式定义,在求得划分超平面的终极目标就是让损失函数最小化,如果是0的话就相当完美了。
在这里插入图片描述

感知机使用梯度下降方法求得w和b的最优解,从而得到划分超平面wx+b,关于梯度下降及其中的步长受篇幅所限可以自行谷歌。

3 代码实现

#coding=utf-8
#Author:Dodo
#Date:2018-11-15
#Email:lvtengchao@pku.edu.cn
'''
数据集:Mnist
训练集数量:60000
测试集数量:10000
------------------------------
运行结果:
正确率:81.72%(二分类)
运行时长:78.6s
'''
import numpy as np
import time
def loadData(fileName):
    '''
    加载Mnist数据集
    :param fileName:要加载的数据集路径
    :return: list形式的数据集及标记
    '''
    print('start to read data')
    # 存放数据及标记的list
    dataArr = []; labelArr = []
    # 打开文件
    fr = open(fileName, 'r')
    # 将文件按行读取
    for line in fr.readlines():
        # 对每一行数据按切割福','进行切割,返回字段列表
        curLine = line.strip().split(',')
        # Mnsit有0-9是个标记,由于是二分类任务,所以将>=5的作为1,<5为-1
        if int(curLine[0]) >= 5:
            labelArr.append(1)
        else:
            labelArr.append(-1)
        #存放标记
        #[int(num) for num in curLine[1:]] -> 遍历每一行中除了以第一哥元素(标记)外将所有元素转换成int类型
        #[int(num)/255 for num in curLine[1:]] -> 将所有数据除255归一化(非必须步骤,可以不归一化)
        dataArr.append([int(num)/255 for num in curLine[1:]])
    #返回data和label
    return dataArr, labelArr
def perceptron(dataArr, labelArr, iter=50):
    '''
    感知器训练过程
    :param dataArr:训练集的数据 (list)
    :param labelArr: 训练集的标签(list)
    :param iter: 迭代次数,默认50
    :return: 训练好的w和b
    '''
    print('start to trans')
    #将数据转换成矩阵形式(在机器学习中因为通常都是向量的运算,转换称矩阵形式方便运算)
    #转换后的数据中每一个样本的向量都是横向的
    dataMat = np.mat(dataArr)
    #将标签转换成矩阵,之后转置(.T为转置)。
    #转置是因为在运算中需要单独取label中的某一个元素,如果是1xN的矩阵的话,无法用label[i]的方式读取
    #对于只有1xN的label可以不转换成矩阵,直接label[i]即可,这里转换是为了格式上的统一
    labelMat = np.mat(labelArr).T
    #获取数据矩阵的大小,为m*n
    m, n = np.shape(dataMat)
    #创建初始权重w,初始值全为0。
    #np.shape(dataMat)的返回值为m,n -> np.shape(dataMat)[1])的值即为n,与
    #样本长度保持一致
    w = np.zeros((1, np.shape(dataMat)[1]))
    #初始化偏置b为0
    b = 0
    #初始化步长,也就是梯度下降过程中的n,控制梯度下降速率
    h = 0.0001
    #进行iter次迭代计算
    for k in range(iter):
        #对于每一个样本进行梯度下降
        #李航书中在2.3.1开头部分使用的梯度下降,是全部样本都算一遍以后,统一
        #进行一次梯度下降
        #在2.3.1的后半部分可以看到(例如公式2.6 2.7),求和符号没有了,此时用
        #的是随机梯度下降,即计算一个样本就针对该样本进行一次梯度下降。
        #两者的差异各有千秋,但较为常用的是随机梯度下降。
        for i in range(m):
            #获取当前样本的向量
            xi = dataMat[i]
            #获取当前样本所对应的标签
            yi = labelMat[i]
            #判断是否是误分类样本
            #误分类样本特诊为: -yi(w*xi+b)>=0,详细可参考书中2.2.2小节
            #在书的公式中写的是>0,实际上如果=0,说明改点在超平面上,也是不正确的
            if -1 * yi * (w * xi.T + b) >= 0:
                #对于误分类样本,进行梯度下降,更新w和b
                w = w + h *  yi * xi
                b = b + h * yi
        #打印训练进度
        print('Round %d:%d training' % (k, iter))
    #返回训练完的w、b
    return w, b
def test(dataArr, labelArr, w, b):
    '''
    测试准确率
    :param dataArr:测试集
    :param labelArr: 测试集标签
    :param w: 训练获得的权重w
    :param b: 训练获得的偏置b
    :return: 正确率
    '''
    print('start to test')
    #将数据集转换为矩阵形式方便运算
    dataMat = np.mat(dataArr)
    #将label转换为矩阵并转置,详细信息参考上文perceptron中
    #对于这部分的解说
    labelMat = np.mat(labelArr).T
    #获取测试数据集矩阵的大小
    m, n = np.shape(dataMat)
    #错误样本数计数
    errorCnt = 0
    #遍历所有测试样本
    for i in range(m):
        #获得单个样本向量
        xi = dataMat[i]
        #获得该样本标记
        yi = labelMat[i]
        #获得运算结果
        result = -1 * yi * (w * xi.T + b)
        #如果-yi(w*xi+b)>=0,说明该样本被误分类,错误样本数加一
        if result >= 0: errorCnt += 1
    #正确率 = 1 - (样本分类错误数 / 样本总数)
    accruRate = 1 - (errorCnt / m)
    #返回正确率
    return accruRate
if __name__ == '__main__':
    #获取当前时间
    #在文末同样获取当前时间,两时间差即为程序运行时间
    start = time.time()
    #获取训练集及标签
    trainData, trainLabel = loadData('../Mnist/mnist_train.csv')
    #获取测试集及标签
    testData, testLabel = loadData('../Mnist/mnist_test.csv')
    #训练获得权重
    w, b = perceptron(trainData, trainLabel, iter = 30)
    #进行测试,获得正确率
    accruRate = test(testData, testLabel, w, b)
    #获取当前时间,作为结束时间
    end = time.time()
    #显示正确率
    print('accuracy rate is:', accruRate)
    #显示用时时长
    print('time span:', end - start)

4 建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/939886.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TCP与UDP的区别(什么是三次握手和四次挥手)

目录 一、TCP和UDP是什么 二、TCP和UDP的区别 三、TCP协议三次握手 为什么是三次握手而不是两次握手 &#xff1f; 在不可靠信道上建立可靠连接会产生什么问题呢&#xff1f; 四、四次挥手 为什么客户端需要等待超时时间&#xff1f; 总结&#xff1a; 我们日常生活中微…

医疗中心管理环境温湿度,这样操作就对了!

随着医疗技术的不断发展&#xff0c;越来越多的医疗设备对于稳定的工作环境要求越来越高&#xff0c;而环境温湿度是影响这些设备性能和可靠性的关键因素之一。 为了确保医疗设备的正常运行和患者的安全&#xff0c;医疗机构越来越倾向于采用精密空调监控系统来维护设备的稳定性…

如何输出高质量软文,媒介盒子教你4大技巧

作为一名软文作者&#xff0c;只有知道软文写作的要求&#xff0c;才能打造一篇成功的软文&#xff0c;以便为企业或产品带来较高的关注度和曝光率&#xff0c;提高企业的知名度和品牌形象。下面就随小编一起来看看吧&#xff01; 1、吸引眼球的标题 标题是软文写作的灵魂&am…

css-伪类:not实现列表最后一项没有样式

有了&#xff1a;not这个选择符&#xff0c;那么你将可以很好的处理类似这样的场景&#xff1a;假定有个列表&#xff0c;每个列表项都有一条底边线&#xff0c;但是最后一项不需要底边线。 示例&#xff1a; html: <ul><li>111111111111</li><li>21…

传统品牌如何通过3D虚拟数字人定制和动捕设备加速年轻化发展?

步入Z时代&#xff0c;年轻一代消费者的生活方式深受互联网技术和媒介环境影响&#xff0c;对新潮事物感兴趣&#xff0c;消费思维也相对前卫&#xff0c;品牌需要探索契合Z世代的消费观念&#xff0c;寻找新的链接拉近品牌与消费者的距离&#xff0c;而3D虚拟数字人定制可以帮…

900ES1-0100 honeywell 可减少视觉引导应用的整体开发时间

900ES1-0100 honeywell 可减少视觉引导应用的整体开发时间 CV2视觉系统配有高柔性电缆(以太网或USB)。通过将高柔性电缆作为所有CV2视觉系统的标准配置&#xff0c;Epson CV2摄像机可以安装在机器人臂(移动)或固定装置(固定)上。基于向导的校准使机器人到视觉系统的校准变得轻…

内网穿透——搭建私人影音媒体平台

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及&#xff0c;各种各样的使用需求也被开发出来&…

第四讲Java基本语法——数组结构(多维数组)

前言 前面几讲,我们讲了Java基本语法,初学者也能够有一定的入门。本讲,我们也是继续来讲解一下Java另一个基础语法——数组,其实在前面讲解数据类型的时候,我们也有提到数组是引用类型,那今天我们就来分析一下什么是数组,怎么用数组呢? 一、数组是什么 数组是…

软件测试用例经典方法 | 逻辑覆盖测试法及案例【文末赠书】

逻辑覆盖测试法是常用的一类白盒测试方法&#xff0c;其以程序内部逻辑结构为基础&#xff0c;通过对程序逻辑结构的遍历来实现程序测试的覆盖。逻辑覆盖测试法要求测试人员对程序的逻辑结构有清晰的了解。 逻辑覆盖测试法是一系列测试过程的总称&#xff0c;是使测试过程逐渐…

如何做科研--英文文献阅读

以下是截取书中的一段话&#xff0c;这对于所有科研工作者感觉都适用&#xff0c;也能让自己了解自己领域前沿的东西&#xff0c;应该也能提高大家英文阅读能力&#xff0c;一起学习共勉&#xff01; “从1998年在普林斯顿大学任职&#xff0c;到在清华大学当教授&#xff0c;…

需求变化频繁的情况下,如何实施自动化测试

一.通常来说&#xff0c;具备以下3个主要条件才能开展自动化测试工作: 1.需求变动不频繁 自动化测试脚本变化的频率决定了自动化测试的维护成本。如果需求变动过于频繁&#xff0c;那么测试人员就需要根据变动的需求来不断地更新自动化测试用例&#xff0c;从而适应新的功能。…

024:vue中动态添加ref,通过ref更改css

第024个 查看专栏目录: VUE ------ element UI 专栏目标 在vue和element UI联合技术栈的操控下&#xff0c;本专栏提供行之有效的源代码示例和信息点介绍&#xff0c;做到灵活运用。 &#xff08;1&#xff09;提供vue2的一些基本操作&#xff1a;安装、引用&#xff0c;模板使…

【视觉SLAM入门】6.1. (基于直接法的视觉里程计)LK光流法,代码解读, 直接法,特征点法对比,稀疏,半稠密,稠密地图

"刺卵掷地&#xff0c;逐蝇弃笔" 0. 数据集1. 光流法(Optical Flow)1.1. 光流1.2. LK光流法1.3 关键代码&#xff1a;1.4 特点 2. 直接法(Direct Methods)2.1 分类比较2.2 优缺点 前置事项&#xff1a; 特征点耗时&#xff0c;丢弃有用信息&#xff0c;特征缺失&…

vite 配置自动补全文件的后缀名

vite 不建议自动补全&#xff0c;文件的后缀名的 const Home ()>import("/views/Home.vue");文件是必须要加上 .vue 的后缀名的 如果 想要像 webpack 一样的不用写&#xff0c; 可以在vite.config.js中配置如下就可以了

【bug记录】RuntimeError: CUDA error: device-side assert triggered

RuntimeError: CUDA error: device-side assert triggered 我个人使用pytorch lightning时&#xff0c;报错RuntimeError: CUDA error: device-side assert triggered 我个人是因为分类类别数目对不上&#xff0c;但是在gpu上运行是不会提示错误的 解决方案&#xff1a;建议…

kubesphere中部署grafana实现dashboard以PDF方式导出

1&#xff0c;部署grafana-image-renderer 2&#xff0c;部署grafana GF_RENDERING_SERVER_URL http://ip:30323/render #grafana-image-renderer地址 GF_RENDERING_CALLBACK_URL http://ip:32403/ #grafana地址 GF_LOG_FILTERS rend…

【ES】笔记-Promise基本使用

笔记-基本使用 一、初始Promise1. 抽象表达:2. 具体表达:为什么要用 Promise?promise的基本流程 二、fs读取文件三、AJAX请求四、Promise封装fs模块五、util.promisify方法六、Promise封装AJAX操作 一、初始Promise 1. 抽象表达: 1. Promise 是一门新的技术(ES6 规范) 2. Pr…

关于单例模式

单例模式的目的&#xff1a; 单例模式的目的和其他的设计模式的目的都是一样的&#xff0c;都是为了降低对象之间的耦合性&#xff0c;增加代码的可复用性&#xff0c;可维护性和可扩展性。 单例模式&#xff1a; 单例模式是一种常用的设计模式&#xff0c;用简单的言语说&am…

uview ui 1.x ActonSheet项太多,设置滚动(亲测有效)

问题&#xff1a;ActionSheet滚动不了。 使用uview ui &#xff1a;u-action-sheet, 但是item太多&#xff0c;超出屏幕了&#xff0c; 查了一下文档&#xff0c;并没有设置滚动的地方。 官方文档&#xff1a;ActionSheet 操作菜单 | uView - 多平台快速开发的UI框架 - uni-a…

oracle 基础运用2

首先在电脑上安装PLSQL developer&#xff0c;这个是oracle图形化连接工具&#xff0c;然后安装win64_11gR2_client&#xff0c;这个是orace客户端&#xff0c;安装完成后可以在cmd命令行输入sqlplus命令进行验证&#xff0c;如图表示安装成功。 作为sys的连接应该是SySDBA或Sy…