Python高光谱遥感数据处理与高光谱遥感机器学习方法应用

news2024/11/18 12:28:38

本文提供一套基于Python编程工具的高光谱数据处理方法和应用案例。

本文涵盖高光谱遥感的基础、方法和实践。基础篇以学员为中心,用通俗易懂的语言解释高光谱的基本概念和理论,旨在帮助学员深入理解科学原理。方法篇结合Python编程工具,专注于解决高频技术难题,通过复现高光谱数据处理和分析过程,并解析代码,提供高效反馈,使学员掌握实践技巧。实践篇通过矿物识别、农业应用、木材含水量提取、土壤有机碳评估等案例,提供可借鉴的高光谱应用技术方案,结合Python科学计算、可视化、数据处理和机器学习库,深入讲解应用开发。通过4个应用场景和12个实践案例,学员将能够提升高光谱技术的应用水平。此外,还提供机器学习的系统课程,帮助学员建立个性化的高光谱遥感机器学习知识体系和方法指南。

课程深入探讨了高光谱成像,涵盖了基本概念、成像原理、数据处理和分析方法,以及运用机器学习和深度学习模型提取和应用高光谱信息的技术。此外,通过Python实践练习,课程帮助学员巩固所学知识,使其得以深入理解与实践。

你将获得:

1.全套的高光谱数据处理方法和应用案例(包含python源码)

2.高光谱与机器学习结合的系统化解决方案

3.最新的技术突破讲解和复现代码

4.科研项目实践和学习方法的专题分享

5.高光谱数据预处理-机器学习-深度学习-图像分类-参数回归等12个专题练习

高光谱遥感信息对于我们认识世界具有重要意义。尽管大部分物质在人眼中看似无异,然而高光谱遥感的观察下,它们呈现出独特的"光谱特征"。这种能够窥见事物的"本质"能力具备着革命性的潜能,对精准农业、地球观测、艺术分析和医学等领域带来巨大的影响。

点击查看原文

第一章、高光谱基础

第一课:高光谱遥感基本概念

01)高光谱遥感

02)光的波长

03)光谱分辨率

04)高光谱遥感的历史和发展

第二课:高光谱传感器与数据获取

01)高光谱遥感成像原理与传感器

02)卫星高光谱数据获取

03)机载(无人机)高光谱数据获取

04)地面光谱数据获取

05)构建光谱库

第三课:高光谱数据预处理

01)图像的物理意义

02)数字量化图像(DN值)

03)辐射亮度数据

04)反射率

05)辐射定标

06大气校正

练习1:

资源02D高光谱卫星数据辐射定标与大气校正

第四课:高光谱分析

01)光谱特征分析

02)高光谱图像分类

03)高光谱地物识别

04)高光谱混合像元分解

练习2

(1)使用DISPEC 对光谱库数据进行光谱吸收特征分析

(2)使用ENVI的沙漏程序对资源02D高光谱卫星数据进行混合像元分解。

第五课:高光谱应用

01)植被调查

02)水质监测

03)岩石、矿物

04)土壤

第二章、高光谱开发基础(Python)

第一课:Python编程介绍

01)Python简介

02)变量和数据类型

03)控制结构

04)功能和模块

05)文件、包、环境

练习3

(1)python基础语法练习

(2)文件读写练习

(3)包的创建导入练习

第二课:Python空间数据处理

01)空间数据Python处理介绍

02)矢量数据处理

03)栅格数据处理

练习4

(1)python矢量数据处理练习

(2)python栅格处理练习

第三课:python 高光谱数据处理

01)数据读取

02)数据预处理

03)光谱特征提取

04)混合像元分解

练习5

(1)高光谱数据读取

(2)高光谱数据预处理

(3)光谱特征提取

(4)混合像元分解

第三章、高光谱机器学习技术(python)

第一课:机器学习概述与python实践

01)机器学习与sciki learn 介绍

02)数据和算法选择

03)通用学习流程

04)数据准备

05)模型性能评估

06)机器学习模型

练习6

机器学习sciki learn练习

第二课:深度学习概述与python实践

01)深度学习概述

02)深度学习框架

03)pytorch开发基础-张量

04)pytorch开发基础-神经网络

05)卷积神经网络

06)手写数据识别

07)图像识别

练习7

(1)深度学习pytorch基础练习

(2)手写数字识别与图像分类练习

第三课:高光谱深度学习机器学习实践

01)高光谱图像分类机器学习实践

02)卷积神经网络(CNN)在高光谱数据分析中的应用

03)循环神经网络(RNN)在高光谱数据分析中的应用

练习8

(1)高光谱深度学习练习

(2)使用自己数据测试02)深度学习框架

第四章、典型案例操作实践

第一课:矿物填图案例

01)岩矿光谱机理

02)基于光谱特征的分析方法

03)混合像元分解的分析方法

04)矿物识别机器学习分析方法

05)矿物分类图深度学习方法

练习9

(1)矿物高光谱混合像元分解练习

(2)矿物识别和分类标签数据制作

(3)矿物分类图深度学习方法

第二课:农业应用案例

01)植被光谱机理

02)农作物病虫害分类

03)农作物分类深度学习实践

练习10

(1)农作物病虫害数据分类

(2)农作物分类深度学习练习

第三课:土壤质量评估案例

01)土壤光谱机理

02)土壤质量调查

03)土壤含水量光谱评估方法

04)土壤有机质含量评估与制图

练习11

(1)基于9种机器学习模型的土壤水分含量回归

(2)土壤有机质含量回归与制图

第四课:木材含水率评估案例

01)高光谱无损检测

02)木材无损检测

03)高光谱木材含水量评估

练习12

木材含水量评估和制图

点击查看原文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/932785.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二叉树的层序遍历及完全二叉树的判断

文章目录 1.二叉树层序遍历 2.完全二叉树的判断 文章内容 1.二叉树层序遍历 二叉树的层序遍历需要一个队列来帮助实现。 我们在队列中存储的是节点的地址,所以我们要对队列结构体的数据域重定义, 以上代码 从逻辑上来讲就是1入队,1出队&am…

【信创】未写完

信创比赛 模块A任务二:docker容器集群管理 模块C子任务一:数据库部署子任务二:数据库参数配置子任务三:数据库管理 模块A 任务二:docker容器集群管理 1.docker run 新建创建容器 2.docker loan 将文件导入镜像库里(将该文件变成镜…

DDR PHY

1.ddr phy架构 1.pub(phy unility block) 支持特性: (1)不支持SDRAM的DLL off mode (2)数据位宽是以8bit逐渐递增的(这样做的目的是因为可能支持16/32/64bit的总线位宽&#xff…

STM32F103 4G Cat.1模块EC200S使用

一、简介 EC200S-CN 是移远通信最近推出的 LTE Cat 1 无线通信模块,支持最大下行速率 10Mbps 和最大上行速率 5Mbps,具有超高的性价比;同时在封装上兼容移远通信多网络制式 LTE Standard EC2x(EC25、EC21、EC20 R2.0、EC20 R2.1&a…

QtCreator指定Windows Kits版本

先说下事件起因:之前一直在用Qt5.12.6+vs2017在写程序,后面调研了一个开源库Qaterial,但是翻来覆去的编译都有问题,后面升级到了Qt5.15.2+vs2019来进行cmake的编译,搞定了Qaterial,但…

家长如何将ChatGPT成为家庭日常活动的得力助手

人工智能已经在许多领域发挥作用,如播放音乐、关闭灯光和帮助我们更安全地驾驶。那么,在养育孩子方面呢? 使用像ChatGPT这样的应用,家长们可以更好地完成任务,但同时也要了解其中存在的风险。 许多家长表示&#xff…

KVM创建虚拟机可访问外网+可使用Xshell等工具连接

创建虚拟机时使用桥接网络模块即可,如下: 1、创建一个存储卷(虚拟机的磁盘) 2、创建虚拟机时选择网络 3、系统安装完成后配置固定IP地址 vi /etc/sysconfig/network-scripts/ifcfg-eth0ONBOOTyes BOOTPROTOstatic IPADDR16.32.15.60 GATEWAY16.32.15.2…

【JasperReport笔记05】JasperReport指定自定义字体文件,解决中文不显示问题

这篇文章,主要介绍JasperReport指定自定义字体文件,解决中文不显示问题。 目录 一、自定义字体文件 1.1、创建字体配置文件 1.2、创建fonts.xml字体文件 1.3、在Jasper Studio中添加字体 1.4、指定模板文件 1.5、案例代码 1.6、运行测试 1.7、服…

Base64与cv2读取的图片,格式互转

Base64编码 Base64编码是一种将二进制数据转换为可打印字符的方式,以便在文本格式中传输或存储。它通常用于将二进制数据编码为ASCII字符串,以便在电子邮件、网页或XML文件中传输。 Base64编码的原理是将3个8位字节的数据(即24位二进制数据…

最近在干什么

不知不觉这个月要过去一大半了,说好的一个月更新一两篇博客又要食言了。就来随便聊聊最近在干的事吧。 以图说话,作为程序员还有什么比 Git 提交记录更好说明你最近工作状态的呢。 当然这里所有的提交记录仅仅来自一个 Repository (库) ,就是…

【Acwing338】计数问题题解

题目描述 举个栗子分类讨论 求a~b中x的个数,可以转换为1~b中x的个数减去1~a-1中x的个数 所以核心是求1~n中x的个数,可以转换为求x在1~n中每一个数的每一位上出现的次数的和 假设要求1~abcdefg(这是一个七位数)中x1的个数&#…

Shell基础_Shell概述及脚本执行方式

文章目录 1. Shell概述1.1 Shell是什么1.2 Shell的分类1.3 Linux支持的Shell1.4 总结 2. Shell脚本的执行方式2.1 echo输出命令2.2 第一个脚本2.3 脚本执行 1. Shell概述 1.1 Shell是什么 Shell是一个命令行解释器,它为用户提供了一个向Linux内核发送请求以便运行…

深度学习8:详解生成对抗网络原理

目录 大纲 生成随机变量 可以伪随机生成均匀随机变量 随机变量表示为操作或过程的结果 逆变换方法 生成模型 我们试图生成非常复杂的随机变量…… …所以让我们使用神经网络的变换方法作为函数! 生成匹配网络 培养生成模型 比较基于样本的两个概率分布 …

结合源码拆解Handler机制

作者:Pingred 前言 当初在讲App启动流程的时候,它的整个流程涉及到的类可以汇总成下面这张图: 那时着重讲了AMS、PMS、Binder这些知识点,有一个是没有对它进行详细讲解的,那就是常见的Handler,它不仅在这个…

一篇掌握BFD技术(一):静态路由与BFD联动配置

1. 实验目的 熟悉静态路由与BFD联动的应用场景掌握静态路由与BFD联动的配置 2. 实验拓扑 想要华为数通配套实验拓扑和配置笔记的朋友们点赞关注&#xff0c;评论区留下邮箱发给你 3. 实验步骤 1&#xff09;配置IP地址 AR1的配置 <Huawei>system-view Enter system…

Linux——socket网络通信

一、什么是socket Socket套接字 由远景研究规划局&#xff08;Advanced Research Projects Agency, ARPA&#xff09;资助加里福尼亚大学伯克利分校的一个研究组研发。其目的是将 TCP/IP 协议相关软件移植到UNIX类系统中。设计者开发了一个接口&#xff0c;以便应用程序能简单地…

继续深挖,Jetpack Compose的State快照系统

Jetpack Compose 有一种特殊的方式来表示状态和传播状态变化&#xff0c;从而驱动最终的响应式体验&#xff1a;状态快照系统&#xff08;State snapshot system&#xff09;。这种响应式模型使我们的代码更加强大和简洁&#xff0c;因为它允许组件根据它们的输入自动重组&…

Docker安装及Docker构建简易版Hadoop生态

一、首先在VM创建一个新的虚拟机将Docker安装好 更新系统&#xff1a;首先打开终端&#xff0c;更新系统包列表。 sudo apt-get update sudo apt-get upgrade下图是更新系统包截图 安装Docker&#xff1a;使用以下命令在Linux上安装Docker。 sudo apt-get install -y docker.i…

离谱事件解决方法2 无法定位程序输入点XXX于动态链接库XXX.dll

事情经过&#xff1a; 本人一只acmer&#xff0c;使用sublime编写代码&#xff0c;但是前两天在打开cpp类型的文件的时候显示报错如下&#xff1a; 这里的dll文件就是动态链接库&#xff0c;它并不是一个可执行文件&#xff0c;里面存放的是程序的函数实现过程&#xff08;公用…

postgresql基于postgis常用空间函数

1、ST_AsGeoJSON 图元转geojson格式 select ST_AsGeoJSON(l.geom) from g_zd l limit 10 2、 ST_Transform 坐标转换 select st_transform(l.shape, 3857) from sde_wf_cyyq l limit 10select st_astext(st_transform(l.shape, 3857)) from sde_wf_cyyq l limit 103、st_aste…