基于JAYA算法优化的BP神经网络(预测应用) - 附代码

news2025/1/9 15:19:53

基于JAYA算法优化的BP神经网络(预测应用) - 附代码

文章目录

  • 基于JAYA算法优化的BP神经网络(预测应用) - 附代码
    • 1.数据介绍
    • 2.JAYA优化BP神经网络
      • 2.1 BP神经网络参数设置
      • 2.2 JAYA算法应用
    • 4.测试结果:
    • 5.Matlab代码

摘要:本文主要介绍如何用JAYA算法优化BP神经网络并应用于预测。

1.数据介绍

本案例数据一共2000组,其中1900组用于训练,100组用于测试。数据的输入为2维数据,预测的输出为1维数据

2.JAYA优化BP神经网络

2.1 BP神经网络参数设置

神经网络参数如下:

%% 构造网络结构
%创建神经网络
inputnum = 2;     %inputnum  输入层节点数 2维特征
hiddennum = 10;     %hiddennum  隐含层节点数
outputnum = 1;     %outputnum  隐含层节点数

2.2 JAYA算法应用

JAYA算法原理请参考:https://blog.csdn.net/u011835903/article/details/115572600

JAYA算法的参数设置为:

popsize = 20;%种群数量
Max_iteration = 20;%最大迭代次数
lb = -5;%权值阈值下边界
ub = 5;%权值阈值上边界
%  inputnum * hiddennum + hiddennum*outputnum 为阈值的个数
%  hiddennum + outputnum 为权值的个数
dim =  inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum ;%  inputnum * hiddennum + hiddennum*outputnum维度

这里需要注意的是,神经网络的阈值数量计算方式如下:

本网络有2层:

第一层的阈值数量为:2*10 = 20; 即inputnum * hiddennum;

第一层的权值数量为:10;即hiddennum;

第二层的阈值数量为:10*1 = 10;即hiddenum * outputnum;

第二层权值数量为:1;即outputnum;

于是可知我们优化的维度为:inputnum * hiddennum + hiddennum*outputnum + hiddennum + outputnum = 41;

适应度函数值设定:

本文设置适应度函数如下:
f i t n e s s = a r g m i n ( m s e ( T r a i n D a t a E r r o r ) + m e s ( T e s t D a t a E r r o r ) ) fitness = argmin(mse(TrainDataError) + mes(TestDataError)) fitness=argmin(mse(TrainDataError)+mes(TestDataError))
其中TrainDataError,TestDataError分别为训练集和测试集的预测误差。mse为求取均方误差函数,适应度函数表明我们最终想得到的网络是在测试集和训练集上均可以得到较好结果的网络。

4.测试结果:

从JAYA算法的收敛曲线可以看到,整体误差是不断下降的,说明JAYA算法起到了优化的作用:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/929127.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录 引言一、线性方程组的基本概念与表达形式二、线性方程组解的基本定理三、线性方程组解的结构写在最后 引言 继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O 一、线性方程组的基本概念与表达形式 方程组 称为 n n n 元齐次线性方程组…

从0到1学会Git(第一部分):Git的下载和初始化配置

1.Git是什么: 首先我们看一下百度百科的介绍:Git(读音为/gɪt/)是一个开源的分布式版本控制系统,可以有效、高速地处理从很小到非常大的项目版本管理。 也是Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件。 …

4.9 已建立连接的TCP,收到SYN会发生什么?

1. 客户端的 SYN 报文里的端口号与历史连接不相同 此时服务端会认为是新的连接要建立,于是就会通过三次握手来建立新的连接。 旧连接里处于 Established 状态的服务端最后会怎么样呢? 服务端给客户端发消息了:客户端连接已被关闭&#xff…

Ant Design Vue 日期选择器DatePicker传给后台日期参数格式问题

花了一个下午才解决&#xff0c;官方组件文档里面是没有处理方案说明的。 项目版本&#xff1a;Ant Design Vue 2.0.2 前端部分代码&#xff1a; <template><a-modal:visible"visible":width"windowWidth":height"800":title"tit…

【C++入门到精通】C++入门 —— 继承(基类、派生类和多态性)

阅读导航 前言一、继承的概念及定义1. 继承的概念2.继承的定义⭕定义格式⭕继承关系和访问限定符⭕继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承中的作用域四、派生类的默认成员函数五、继承与友元六、继承与静态成员七、复杂的菱形继承及菱形虚拟继承⭕单…

数据库为什么使用B+树而不是B树做索引

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

代码随想录训练营二刷第三天 | 203.移除链表元素 707.设计链表 206.反转链表

代码随想录训练营二刷第三天 | 203.移除链表元素 707.设计链表 206.反转链表 一、203.移除链表元素 题目链接&#xff1a;https://leetcode.cn/problems/remove-linked-list-elements/ 思路&#xff1a;使用虚拟头结点&#xff0c;两个指针&#xff0c;一个是遍历指针&#x…

基于微信小程序的餐厅预订系统的设计与实现(论文+源码)_kaic

摘 要 随着消费升级&#xff0c;越来越多的年轻人已经开始不再看重餐饮等行业的服务&#xff0c;而是追求一种轻松自在的用餐、购物环境。因此&#xff0c;无人餐厅、无人便利店、无人超市等一些科技消费场所应势而生。餐饮企业用工荒已成为不争的事实。服务员行业的低保障、低…

算法笔记(二):二分查找

二分查找 1、基础版 public static int binarySearch(int[] a, int target) {int i 0, j a.length - 1;while (i < j) {int m (i j) >>> 1;if (target < a[m]) { // 在左边j m - 1;} else if (a[m] < target) { // 在右边i m 1;} else {return m…

用正则处理Unicode 编码的文本

Unicode&#xff08;中文&#xff1a;万国码、国际码、统一码、单一码&#xff09;是计算机科学领域里的一项业界标准。它对世界上大部分的文字进行了整理、编码。Unicode 使计算机呈现和处理文字变得简单。 现在的 Unicode 字符分为 17 组编排&#xff0c;每组为一个平面&…

前端工程化之规范化

规范化是我们践行前端工程化中重要的一部分。 为什么要有规范化标准 俗话说&#xff0c;无规矩不成方圆&#xff0c;尤其是在开发行业中&#xff0c;更是要有严谨的工作态度&#xff0c;我们都知道大多数软件开发都不是一个人的工作&#xff0c;都是需要多人协同的&#xff0…

C++内存模型

目录 内存模型分类 堆和栈的区别 C中new的工作过程 堆和栈的区别 为什么堆区要比栈区大 内存模型分类 文本段&#xff08;ELF&#xff09;&#xff08;数据区&#xff09;&#xff1a;主要用于存放我们编写的代码&#xff0c;但是不是按照代码文本的形式存放&#xff0c;而…

MySQL的日志undolog、binlog、redolog

1. 日志层次 binlog是Server层&#xff0c;undolog和redolog是innodb引擎层特有的。 2. 记录了什么 & 作用 binlog 记录了所有数据库结构变更和表数据修改的SQL日志。 主要用于数据备份和主从复制&#xff0c;比如误删数据了可以用binlog找回。 undolog 如下图&#…

测试一下阿里通义千问-7B-Chat的性能

测试一下阿里通义千问-7B-Chat的性能 0. 背景1. 实际测试结果(截图) 0. 背景 为了了解一下阿里通义千问-7B-Chat的性能&#xff0c;出了几个问题测试一下。 1. 实际测试结果(截图) 示例代码&#xff0c; import os import openaifrom dotenv import load_dotenv, find_dote…

gma 2 教程(二)数据操作:6.NumPy数组交互

gma 栅格数据集可以通过 ToArray 方法将栅格数据转为NumPy数组&#xff0c;也提供将NumPy数据转换为栅格数据&#xff08;集&#xff09;的方法。 读取NumPy数组到数据集 &#xff08;一&#xff09;函数简介   &#xff08;二&#xff09;示例 保存NumPy数组到文件 &…

基于热交换算法优化的BP神经网络(预测应用) - 附代码

基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.热交换优化BP神经网络2.1 BP神经网络参数设置2.2 热交换算法应用 4.测试结果&#xff1a;5.Matlab代…

leetcode496. 下一个更大元素 I 【单调栈】

【简单题】&#xff08;暴力遍历法很简单&#xff09;但是时间复杂度很高&#xff0c;n的立方级别了。。。 代码&#xff1a; class Solution { public:vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {vector<int&g…

Vue2向Vue3过度核心技术computed计算属性

目录 1 computed计算属性1.1 概念1.2 语法1.3 注意1.4.案例1.5.代码准备 2 computed计算属性 VS methods方法2.1 computed计算属性2.2 methods计算属性2.3 计算属性的优势2.4 总结 3 计算属性的完整写法 1 computed计算属性 1.1 概念 基于现有的数据&#xff0c;计算出来的新属…

抓包相关,抓包学习

检查网络流量 - 提琴手经典 (telerik.com) Headers Reference - Fiddler Classic (telerik.com) 以上是fiddler官方文档 F12要勾选保留日志 不勾选的话跳转到新页面之前页面的日志不会在下方显示 会保留所有抓到的包 如果重定向到别的页面 F12抓包可能看不到响应信息,但是…

在Jupyter Notebook中添加Anaconda环境(内核)

在使用前我们先要搞清楚一些事&#xff1a; 我们在安装anaconda的时候它就内置了Jupyter Notebook&#xff0c;这个jupyter初始只有base一个内核&#xff08;显示为Python3&#xff09; 此后其实我们就不需要重复安装完整的jupyter notebook了&#xff0c;只要按需为其添加新的…