【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

news2024/11/17 0:18:15

文章目录

  • 引言
  • 一、线性方程组的基本概念与表达形式
  • 二、线性方程组解的基本定理
  • 三、线性方程组解的结构
  • 写在最后


引言

继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O


一、线性方程组的基本概念与表达形式

方程组
在这里插入图片描述
称为 n n n 元齐次线性方程组。

方程组
在这里插入图片描述
称为 n n n 元非齐次线性方程组。

方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。

方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线性方程组的基本形式。

α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,,am1)T,α2=(a12,a22,,am2)T,,αn=(a1n,a2n,,amn)T,b=(b1,b2,,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2++xnαn=01.1 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2++xnαn=b2.1

X = ( x 1 , x 2 , … , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,,xn)T ,矩阵 A = [ α 1 , α 2 , … , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn] ,即
在这里插入图片描述
则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=01.2 A X = b ( 2.2 ) AX=b(2.2) AX=b2.2


二、线性方程组解的基本定理

其实就是前面我们在学向量时就已经总结过的,矩阵、向量和线性方程组解的关系,传送门。

  • 齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

特别地,如果系数矩阵 A A A n n n 阶方阵,还有以下结论:

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0. |A| \ne 0. A=0.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ∣ A ∣ = 0. |A| = 0. A=0.

对于非齐次方程组解的情况,我们可对有解的情况进一步讨论。

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

特别地,如果系数矩阵 A A A n n n 阶方阵,还有以下结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ∣ A ∣ ≠ 0. |A| \ne 0. A=0.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ∣ A ∣ = 0. |A|=0. A=0.
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

在学向量时就已经讨论了矩阵、向量和方程组解的关系的话,现在来学就会非常轻松。

对于系数矩阵是方阵的方程组,无非就是将行列式和秩联系了起来。如果矩阵的秩那一部分学得到位,也不是什么难点。因此如果要记忆就记忆秩的关系就好,行列式的结论自然能想到。


三、线性方程组解的结构

  1. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 也为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解,其中 k 1 , k 2 , … , k s k_1,k_2,\dots,k_s k1,k2,,ks 为任意常数。
  2. η 0 \pmb{\eta_0} η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一个解, X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s + η 0 k_1X_1+k_2X_2+\dots +k_sX_s+\pmb{\eta_0} k1X1+k2X2++ksXs+η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解。
  3. η 1 , η 2 \pmb{\eta_1,\eta_2} η1,η2 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的两个解,则 η 1 − η 2 \pmb{\eta_1-\eta_2} η1η2 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解。
  4. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 也为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 1. k_1+k_2+\dots+k_s=1. k1+k2++ks=1.
  5. X 1 , X 2 , … , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2++ksXs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 0. k_1+k_2+\dots+k_s=0. k1+k2++ks=0.

是不是有点熟悉,特别像我们在微分方程中学的关于高阶线性微分方程的解的结构。

  1. 齐次解线性组合仍为齐次解。
  2. 齐次解 + 非齐次解为非齐次解。
  3. 非齐次解相减为齐次解。
  4. 非齐次解线性组合,系数之和为 1 才是非齐次解。
  5. 非齐次解线性组合,系数之和为 0 才是齐次解。

写在最后

线性方程组还有些内容,是关于计算的,我们放在后面来细说!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/929126.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从0到1学会Git(第一部分):Git的下载和初始化配置

1.Git是什么: 首先我们看一下百度百科的介绍:Git&#xff08;读音为/gɪt/&#xff09;是一个开源的分布式版本控制系统&#xff0c;可以有效、高速地处理从很小到非常大的项目版本管理。 也是Linus Torvalds为了帮助管理Linux内核开发而开发的一个开放源码的版本控制软件。 …

4.9 已建立连接的TCP,收到SYN会发生什么?

1. 客户端的 SYN 报文里的端口号与历史连接不相同 此时服务端会认为是新的连接要建立&#xff0c;于是就会通过三次握手来建立新的连接。 旧连接里处于 Established 状态的服务端最后会怎么样呢&#xff1f; 服务端给客户端发消息了&#xff1a;客户端连接已被关闭&#xff…

Ant Design Vue 日期选择器DatePicker传给后台日期参数格式问题

花了一个下午才解决&#xff0c;官方组件文档里面是没有处理方案说明的。 项目版本&#xff1a;Ant Design Vue 2.0.2 前端部分代码&#xff1a; <template><a-modal:visible"visible":width"windowWidth":height"800":title"tit…

【C++入门到精通】C++入门 —— 继承(基类、派生类和多态性)

阅读导航 前言一、继承的概念及定义1. 继承的概念2.继承的定义⭕定义格式⭕继承关系和访问限定符⭕继承基类成员访问方式的变化 二、基类和派生类对象赋值转换三、继承中的作用域四、派生类的默认成员函数五、继承与友元六、继承与静态成员七、复杂的菱形继承及菱形虚拟继承⭕单…

数据库为什么使用B+树而不是B树做索引

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

代码随想录训练营二刷第三天 | 203.移除链表元素 707.设计链表 206.反转链表

代码随想录训练营二刷第三天 | 203.移除链表元素 707.设计链表 206.反转链表 一、203.移除链表元素 题目链接&#xff1a;https://leetcode.cn/problems/remove-linked-list-elements/ 思路&#xff1a;使用虚拟头结点&#xff0c;两个指针&#xff0c;一个是遍历指针&#x…

基于微信小程序的餐厅预订系统的设计与实现(论文+源码)_kaic

摘 要 随着消费升级&#xff0c;越来越多的年轻人已经开始不再看重餐饮等行业的服务&#xff0c;而是追求一种轻松自在的用餐、购物环境。因此&#xff0c;无人餐厅、无人便利店、无人超市等一些科技消费场所应势而生。餐饮企业用工荒已成为不争的事实。服务员行业的低保障、低…

算法笔记(二):二分查找

二分查找 1、基础版 public static int binarySearch(int[] a, int target) {int i 0, j a.length - 1;while (i < j) {int m (i j) >>> 1;if (target < a[m]) { // 在左边j m - 1;} else if (a[m] < target) { // 在右边i m 1;} else {return m…

用正则处理Unicode 编码的文本

Unicode&#xff08;中文&#xff1a;万国码、国际码、统一码、单一码&#xff09;是计算机科学领域里的一项业界标准。它对世界上大部分的文字进行了整理、编码。Unicode 使计算机呈现和处理文字变得简单。 现在的 Unicode 字符分为 17 组编排&#xff0c;每组为一个平面&…

前端工程化之规范化

规范化是我们践行前端工程化中重要的一部分。 为什么要有规范化标准 俗话说&#xff0c;无规矩不成方圆&#xff0c;尤其是在开发行业中&#xff0c;更是要有严谨的工作态度&#xff0c;我们都知道大多数软件开发都不是一个人的工作&#xff0c;都是需要多人协同的&#xff0…

C++内存模型

目录 内存模型分类 堆和栈的区别 C中new的工作过程 堆和栈的区别 为什么堆区要比栈区大 内存模型分类 文本段&#xff08;ELF&#xff09;&#xff08;数据区&#xff09;&#xff1a;主要用于存放我们编写的代码&#xff0c;但是不是按照代码文本的形式存放&#xff0c;而…

MySQL的日志undolog、binlog、redolog

1. 日志层次 binlog是Server层&#xff0c;undolog和redolog是innodb引擎层特有的。 2. 记录了什么 & 作用 binlog 记录了所有数据库结构变更和表数据修改的SQL日志。 主要用于数据备份和主从复制&#xff0c;比如误删数据了可以用binlog找回。 undolog 如下图&#…

测试一下阿里通义千问-7B-Chat的性能

测试一下阿里通义千问-7B-Chat的性能 0. 背景1. 实际测试结果(截图) 0. 背景 为了了解一下阿里通义千问-7B-Chat的性能&#xff0c;出了几个问题测试一下。 1. 实际测试结果(截图) 示例代码&#xff0c; import os import openaifrom dotenv import load_dotenv, find_dote…

gma 2 教程(二)数据操作:6.NumPy数组交互

gma 栅格数据集可以通过 ToArray 方法将栅格数据转为NumPy数组&#xff0c;也提供将NumPy数据转换为栅格数据&#xff08;集&#xff09;的方法。 读取NumPy数组到数据集 &#xff08;一&#xff09;函数简介   &#xff08;二&#xff09;示例 保存NumPy数组到文件 &…

基于热交换算法优化的BP神经网络(预测应用) - 附代码

基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于热交换算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.热交换优化BP神经网络2.1 BP神经网络参数设置2.2 热交换算法应用 4.测试结果&#xff1a;5.Matlab代…

leetcode496. 下一个更大元素 I 【单调栈】

【简单题】&#xff08;暴力遍历法很简单&#xff09;但是时间复杂度很高&#xff0c;n的立方级别了。。。 代码&#xff1a; class Solution { public:vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {vector<int&g…

Vue2向Vue3过度核心技术computed计算属性

目录 1 computed计算属性1.1 概念1.2 语法1.3 注意1.4.案例1.5.代码准备 2 computed计算属性 VS methods方法2.1 computed计算属性2.2 methods计算属性2.3 计算属性的优势2.4 总结 3 计算属性的完整写法 1 computed计算属性 1.1 概念 基于现有的数据&#xff0c;计算出来的新属…

抓包相关,抓包学习

检查网络流量 - 提琴手经典 (telerik.com) Headers Reference - Fiddler Classic (telerik.com) 以上是fiddler官方文档 F12要勾选保留日志 不勾选的话跳转到新页面之前页面的日志不会在下方显示 会保留所有抓到的包 如果重定向到别的页面 F12抓包可能看不到响应信息,但是…

在Jupyter Notebook中添加Anaconda环境(内核)

在使用前我们先要搞清楚一些事&#xff1a; 我们在安装anaconda的时候它就内置了Jupyter Notebook&#xff0c;这个jupyter初始只有base一个内核&#xff08;显示为Python3&#xff09; 此后其实我们就不需要重复安装完整的jupyter notebook了&#xff0c;只要按需为其添加新的…

Nexus 如何配置匿名用户访问一个仓库

现在有这样一个需求&#xff0c;我们需要匿名用户访问 Nexus 的一个公共仓库。 设置 Roles 在满足这个需求之前&#xff0c;我们需要设置一个 Roles。 Role 的名字是可以随填写的。 这里关键的问题在你需要访问的仓库的 View 的权限需要设置 Read 和 Browse 这 2 个权限。 如…