docker的资源控制及数据管理

news2024/10/6 16:25:41

docker的资源控制及docker数据管理

一.docker的资源控制

1.CPU 资源控制

1.1 资源控制工具

cgroups,是一个非常强大的linux内核工具,他不仅可以限制被 namespace 隔离起来的资源, 还可以为资源设置权重、计算使用量、操控进程启停等等。 所以 cgroups(Control groups)实现了对资源的配额和度量。

1.2 cgroups有四大功能

●资源限制:可以对任务使用的资源总额进行限制
●优先级分配:通过分配的cpu时间片数量以及磁盘IO带宽大小,实际上相当于控制了任务运行优先级
●资源统计:可以统计系统的资源使用量,如cpu时长,内存用量等
●任务控制:cgroup可以对任务执行挂起、恢复等操作

1.3 设置CPU使用率上限

Linux通过CFS(Completely Fair Scheduler,完全公平调度器)来调度各个进程对CPU的使用。CFS默认的调度周期是100ms。
我们可以设置每个容器进程的调度周期,以及在这个周期内各个容器最多能使用多少 CPU 时间。

使用 --cpu-period 即可设置调度周期,使用 --cpu-quota 即可设置在每个周期内容器能使用的CPU时间。两者可以配合使用。
CFS 周期的有效范围是 1ms~1s,对应的 --cpu-period 的数值范围是 1000~1000000。 周期100毫秒
而容器的 CPU 配额必须不小于 1ms,即 --cpu-quota 的值必须 >= 1000。

docker run -itd --name test5 centos:7 /bin/bash
cd /sys/fs/cgroup/cpu/docker/
ls
cd 04cebd503002e7725beb25d4424e0eaa0aaa7a8019b9050d9911607c535da896
cat cpu.cfs_quota_us

在这里插入图片描述

cat cpu.cfs_period_us 

在这里插入图片描述

注解:

cpu.cfs_period_us:cpu分配的周期(微秒,所以文件名中用 us 表示),默认为100000。
cpu.cfs_quota_us:表示该cgroups限制占用的时间(微秒),默认为-1,表示不限制。 如果设为50000,表示占用50000/100000=50%的CPU。

1.4 进行CPU压力测试

docker exec -it 1a29ed506da4 /bin/bash
vi /cpu.sh
#!/bin/bash
i=0
while true
do
let i++
done
chmod +x /cpu.sh
./cpu.sh
#可以看到这个脚本占了很多的cpu资源
top

在这里插入图片描述

1.5 设置50%的比例分配CPU使用时间上限

#可以重新创建一个容器并设置限额
docker run -itd --name test6 --cpu-quota 50000 centos:7 /bin/bash
#或者进入修改
cd /sys/fs/cgroup/cpu/docker/1a29ed506da4dc4c41179b38e2175a3a5d8a02f55c833f5992536d850dc404a4/
echo 50000 > cpu.cfs_quota_us
docker exec -it 1a29ed506da4 /bin/bash
./cpu.sh

在这里插入图片描述

#可以看到cpu占用率接近50%,cgroups对cpu的控制起了效果
top

在这里插入图片描述

1.6 设置CPU资源占用比(设置多个容器时才有效)

Docker 通过 --cpu-shares 指定 CPU 份额,默认值为1024,值为1024的倍数。

1.6.1 两个容器测试cpu

(1)创建两个容器为 c1 和 c2,若只有这两个容器,设置容器的权重,使得c1和c2的CPU资源占比为1/3和2/3。

docker run -itd --name c1 --cpu-shares 512 centos:7	
docker run -itd --name c2 --cpu-shares 1024 centos:7

(2)分别进入容器,进行压力测试

c1:

docker exec -it eb2c65e90789 /bin/bash
vi /cpu.sh
#!/bin/bash
i=0
while true
do
let i++
done
chmod +x /cpu.sh
./cpu.sh

另开终端:

c2:

docker exec -it d32f1cdfafe2 /bin/bash
vi /cpu.sh
#!/bin/bash
i=0
while true
do
let i++
done
chmod +x /cpu.sh
./cpu.sh

另开终端

yum install -y epel-release
yum install -y stress
#产生四个进程,每个进程都反复不停的计算随机数的平方根
stress -c 4				

(3)另开终端,查看容器运行状态(动态更新)

docker stats

在这里插入图片描述

1.6.2 设置容器绑定指定的CPU

(1)先分配虚拟机4个CPU核数

docker run -itd --name test7 --cpuset-cpus 1,3 centos:7 /bin/bash

(2)进入容器,进行压力测试

yum install -y epel-release
yum install stress -y
stress -c 4
docker exec -it d32f1cdfafe2 /bin/bash
vi /cpu.sh
#!/bin/bash
i=0
while true
do
let i++
done
chmod +x /cpu.sh
./cpu.sh

另开终端
在这里插入图片描述

(3)退出容器,执行 top 命令再按 1 查看CPU使用情况。

2.对内存使用的限制

(1)-m(–memory=) 选项用于限制容器可以使用的最大内存

docker run -itd --name test8 -m 512m centos:7 /bin/bash
docker stats

在这里插入图片描述

(2)限制可用的 swap 大小, --memory-swap
强调一下,–memory-swap 是必须要与 --memory 一起使用的。

正常情况下,–memory-swap 的值包含容器可用内存和可用 swap。
所以 -m 300m --memory-swap=1g 的含义为:容器可以使用 300M 的物理内存,并且可以使用 700M(1G - 300)的 swap。

如果 --memory-swap 设置为 0 或者 不设置,则容器可以使用的 swap 大小为 -m 值的两倍。
如果 --memory-swap 的值和 -m 值相同,则容器不能使用 swap。
如果 --memory-swap 值为 -1,它表示容器程序使用的内存受限,而可以使用的 swap 空间使用不受限制(宿主机有多少 swap 容器就可以使用多少)。

3.对磁盘IO配额控制(blkio)的限制

–device-read-bps:限制某个设备上的读速度bps(数据量),单位可以是kb、mb(M)或者gb。
例:

docker run -itd --name test9 --device-read-bps /dev/sda:1M  centos:7 /bin/bash
dd if=/dev/zero of=test.out bs=1M count=10 oflag=direct	

–device-write-bps : 限制某个设备上的写速度bps(数据量),单位可以是kb、mb(M)或者gb。

在这里插入图片描述

docker run -itd --name test11 --device-write-bps /dev/sda:1mb centos:7 /bin/bash
dd if=/dev/zero of=test.out bs=1M count=10 oflag=direct	

–device-read-iops :限制读某个设备的iops(次数)

–device-write-iops :限制写入某个设备的iops(次数)
在这里插入图片描述

3.1 创建容器,并限制写速度

docker run -it --name test10 --device-write-bps /dev/sda:1MB centos:7 /bin/bash
#通过dd来验证写速度
#添加oflag参数以规避掉文件系统cache
dd if=/dev/zero of=test.out bs=1M count=10 oflag=direct	

10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 10.0025 s, 1.0 MB/s
#清理docker占用的磁盘空间
docker system prune -a			#可以用于清理磁盘,删除关闭的容器、无用的数据卷和网络

在这里插入图片描述
在这里插入图片描述

停止的容器已被清理
在这里插入图片描述

二.docker数据管理

1.为何需要docker数据管理

因为数据写入后如果停止了容器,再开启数据就会消失,使用数据管理的数据卷挂载,实现了数据的持久化,重启数据还会存在;还有一种方式,容器之间共享文件即相当于有个备份,也会解决停止容器后数据消失的问题。

2.数据管理类型

管理 Docker 容器中数据主要有两种方式:数据卷(Data Volumes)和数据卷容器(DataVolumes Containers)

3.数据卷

数据卷是一个供容器使用的特殊目录,位于容器中。可将宿主机的目录挂载到数据卷上,,对数据卷的修改操作立刻可见,并且更新数据不会影响镜像,从而实现数据在宿主机与容器之间的迁移。数据卷的使用类似于 Linux 下对目录进行的 mount 操作,可以互相同步内容

#拉取CentOS 7的Docker镜像
docker pull centos:7
#使用docker run命令来创建并运行一个基于CentOS 7镜像的容器
docker run -itd  centos:7 /bin/bash
mkdir /var/www
#宿主机创建目录
docker run -v /var/www:/data1 --name web1 -it centos:7 /bin/bash
#创建容器centos7并命名为web1.将宿主机的/var/www目录挂载到容器中的/data1卷中
# -v 选项表示容器中创建数据卷
echo "this is web1" > /data1/a.txt
exit
#数据卷中创建内容a.txt并退出
cd /var/www/
#进入宿主机的挂载目录
cat a.txt
#验证容器中数据卷内容
echo 123>abc.txt
#宿主机的挂载目录创建一个文件夹
docker start web1
docker exec -it web1   /bin/bash 
#开启web1容器并进入
ls /data1
#显示data1数据卷验证其中是否有abc.txt

在这里插入图片描述

4.数据卷容器

–volumes-from 要挂载那个容器名称/id号 #用于容器之间的挂载
如果需要在容器之间共享一些数据,最简单的方法就是使用数据卷容器。数据卷容器是一个普通的容器,专门提供数据卷给其他容器挂载使用。

docker run --name web3 -v /data1 -v /data2 -it centos:7 /bin/bash
#创建数据卷容器web3 并创建2个data目录
echo "this is web3" > /data1/abc.txt
echo "This is web3" > /data2/ABC.txt
#web3容器2个data下创建文件
docker run -it --volumes-from web3 --name web4 centos:7 /bin/bash
#使用 --volumes-from 来挂载 web3 容器中的数据卷到新的容器
cat /data1/abc.txt
cat /data2/ABC.txt

在这里插入图片描述

5.容器的互联

容器互联是通过容器的名称在容器间建立一条专门的网络通信隧道。简单点说,就是会在源容器和接收容器之间建立一条隧道,接收容器可以看到源容器指定的信息。

docker run -itd -P --name web01 centos:7 /bin/bash
#创建并运行源容器取名web1
docker run -itd -P --name web03 --link web01:web01 centos:7 /bin/bash、
#创建并运行接收容器取名web2,使用--link选项指定连接容器以实现容器互联

在这里插入图片描述
在这里插入图片描述

#进入web03容器
docker exec -it web03 /bin/bash
ping 90fd4a7ad12f

在这里插入图片描述

#查看web01的地址
docker inspect web01

在这里插入图片描述

#进入web03pingweb01的IP地址
ping 172.17.0.5

在这里插入图片描述

生产扩展

故障:由于docker容器故障导致大量日志集满,会造成磁盘空间满
解决方案
1、清除日志

#!/bin/bash
logs=$ (find /var/lib/docker/containers/ -name *-json.log*)
for log in $logs
do
cat /dev/null > $log
done

2、当日志占满之后如何处理
###设置docker日志文件数量及每个日志大小

 vim /etc/docker/daemon.json
{
"registry-mirrors": ["http://f613ce8f.m.daocloud.io"],
"log-driver": "json-file",   #我的一日志格式
"log-opts": { "max-size" : "500m", "max-file" : "3"}   #日志的参数最大500M   我最大容器中有三个日志文件 每个日志文件大小是500M
}
#修改完需要重新加载  
systemctl daemon-reload

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/904539.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

面试汇总-testcase

朋友圈点赞的测试用例 功能测试 1点赞后是否显示结果 2.点赞后是否可以取消; 3.点赞取消后是否可以重复点赞; 4.共同好友点赞后,是否有消息提醒; 5.非共同好友点赞后,是否有消息提醒; 6.点击点赞人昵称,是否可以跳转到他/她的主页; 7.自己能…

对象头的结构

一、对象头的结构(32位虚拟机) 1、普通对象 普通对象头占用64 bits ,其中Mark word占32 bits ,Klass Words 占32bits。Klass Words 可以理解为指针,指向类对象。Mark Word下面会详解。 2、数组对象 数组对象增加了4个字节的空间,…

百度许少辉著Baidu《乡村振兴战略下传统村落文化旅游设计》图书馆新书通报

百度许少辉著Baidu《乡村振兴战略下传统村落文化旅游设计》图书馆新书通报

【C语言学习】二维数组

二维数组 int[3][5];//通常理解为a是一个3行5列的矩阵二维数组的遍历 for(i0; i<3; i){for(j0; j<5; j){a[i][j] i*j;} }

删除链表中的节点(力扣)

目录 题目&#xff1a; 看着花里胡哨&#xff0c;小卡拉米四行代码秒杀&#xff01; 示例&#xff1a; 思路&#xff1a; 代码&#xff1a; 题目&#xff1a; 看着花里胡哨&#xff0c;小卡拉米四行代码秒杀&#xff01; 示例&#xff1a; 思路&#xff1a; 把后一个节点的…

多线程实现与管理

进程与线程 进程 &#xff1a; 进程是操作系统进行资源分配的最小单位&#xff0c;每执行一个程序、一条命令操作系统都会启动一个进程&#xff0c;进程是一个程序的执行过程&#xff0c;当程序启动时&#xff0c;操作系统会把进程的代码加载到内存中&#xff0c;并为新进程分配…

Python爬虫——scrapy_日志信息以及日志级别

日志级别&#xff08;由高到低&#xff09; CRITICAL&#xff1a; 严重错误 ERROR&#xff1a; 一般错误 WARNING&#xff1a; 警告 INFO&#xff1a; 一般警告 DEBUG&#xff1a; 调试信息 默认的日志等级是DEBUG 只要出现了DEBUG或者DEBUG以上等级的日志&#xff0c;那么这些…

开集输出和开漏输出

​​​​​​ 首先指明一下以下8中GPIO输入输出模式&#xff1a; GPIO_Mode_AIN 模拟输入&#xff1b; GPIO_Mode_IN_FLOATING 浮空输入&#xff1b; GPIO_Mode_IPD 下拉输入&#xff1b; GPIO_Mode…

JVM面试题-2

1、有哪几种垃圾回收器&#xff0c;各自的优缺点是什么&#xff1f; 垃圾回收器主要分为以下几种&#xff1a;Serial、ParNew、Parallel Scavenge、Serial Old、Parallel Old、CMS、G1&#xff1b; Serial:单线程的收集器&#xff0c;收集垃圾时&#xff0c;必须stop the worl…

RPM包的概念以及制作过程

RPM包的概念以及制作过程 1. 软件包管理工具的背景介绍2. RPM&#xff08;Red-Hat Package Manager&#xff09;2.1 rpm包的命名规范2.2 rpm的基础命令2.3 安装与卸载 3. RPM包的制作3.1 源码包的制作3.2 .spec配置文件的构建3.3 rpmbuild命令编译验证 4. 软件仓库制作4.1 安装…

QChart:数据可视化(用图像形式显示数据内容)

1、数据可视化的图形有&#xff1a;柱状/线状/条形/面积/饼/点图、仪表盘、走势图&#xff0c;弦图、金字塔、预测曲线图、关系图、数学公式图、行政地图、GIS地图等。 2、在QT Creator的主页面&#xff0c;点击 欢迎》示例》右侧输入框 输入Chart&#xff0c;即可查看到QChar…

鲁棒优化入门(5)—Matlab+Yalmip求解鲁棒优化编程实战

之前的博客&#xff1a;鲁棒优化入门&#xff08;二&#xff09;——基于matlabyalmip求解鲁棒优化问题 去年发布了使用Yalmip工具箱求解鲁棒优化问题的博客之后&#xff0c;陆陆续续有朋友问我相关的问题&#xff0c;有人形容从学习这篇博客到求解论文中的鲁棒优化问题&#x…

redis--主从复制

redis主从复制 Redis 主从复制是一种用于实现数据复制和数据备份的机制&#xff0c;它允许将一个 Redis 服务器的数据复制到其他 Redis 服务器上。主从复制在 Redis 中通常用于构建高可用性架构、读写分离以及数据分析等场景。 主从复制的角色 主服务器&#xff08;Master&a…

互斥锁、自旋锁、读写锁和文件锁

互斥锁 互斥锁&#xff08;mutex&#xff09;又叫互斥量&#xff0c;从本质上说是一把锁&#xff0c;在访问共享资源之前对互斥锁进行上锁&#xff0c;在访问完成后释放互斥锁&#xff08;解锁&#xff09;&#xff1b;对互斥锁进行上锁之后&#xff0c;任何其它试图再次对互斥…

python中文热词统计demo

背景 老人家不识字&#xff0c;在城市生活不便&#xff0c;喜欢去基督教堂&#xff0c;但是听不懂&#xff0c;也难以和姊妹们(老头老太太们)交流。于是想教他识字&#xff0c;从哪里教起呢&#xff0c;不如从 《圣经》的常用字词开始吧&#xff0c;于是花了几分钟把《圣经》热…

LeetCode 周赛上分之旅 #40 结合特征压缩的数位 DP 问题

⭐️ 本文已收录到 AndroidFamily&#xff0c;技术和职场问题&#xff0c;请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架&#xff0c;你的思考越抽象&#xff0c;它能覆盖的问题域就越广&#xff0c;理解难度…

构建 NodeJS 影院微服务并使用 docker 部署它(02/4)

一、说明 构建一个微服务的电影网站&#xff0c;需要Docker、NodeJS、MongoDB&#xff0c;这样的案例您见过吗&#xff1f;如果对此有兴趣&#xff0c;您就继续往下看吧。 图片取自网络 — 封面由我制作 这是✌️“构建 NodeJS 影院微服务”系列的第二篇文章。 二、对第一部分的…

8.3.tensorRT高级(3)封装系列-tensor封装,索引计算,内存标记及自动复制

目录 前言1. Tensor封装总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT 高级-tensor封装&#xff0c;索引计算&a…

cuOSD(CUDA On-Screen Display Library)库的学习

目录 前言1. cuOSD1.1 Description1.2 Getting started1.3 For Python Interface1.4 Demo1.5 Performance Table 2. cuOSD案例2.1 环境配置2.2 simple案例2.3 segment案例2.4 segment2案例2.5 polyline案例2.6 comp案例2.7 perf案例 3. cuOSD浅析3.1 simple_draw函数 4. 补充知…

MacBook上有Face ID的梦想还没破灭,但是为什么迟迟不来呢

苹果公司详细介绍了Face ID与Touch ID相比的优势&#xff0c;尤其是在安全方面。因此&#xff0c;令人惊讶的是&#xff0c;该功能还没有进入MacBook&#xff0c;尤其是在显示方面。值得庆幸的是&#xff0c;一项新专利表明&#xff0c;在某个时候&#xff0c;这可能是一种可能…