8.3.tensorRT高级(3)封装系列-tensor封装,索引计算,内存标记及自动复制

news2024/11/24 16:56:20

目录

    • 前言
    • 1. Tensor封装
    • 总结

前言

杜老师推出的 tensorRT从零起步高性能部署 课程,之前有看过一遍,但是没有做笔记,很多东西也忘了。这次重新撸一遍,顺便记记笔记。

本次课程学习 tensorRT 高级-tensor封装,索引计算,内存标记及自动复制

课程大纲可看下面的思维导图

在这里插入图片描述

1. Tensor封装

这节我们学习 tensor 的封装,张量是 CNN 中常见的基本单元,尤其是计算偏移量的工作需要封装,其次是内存的复制、分配需要引用 memory 进行封装,避免使用时面对指针不好管控

Tensor 封装主要考虑以下几点:

1. Tensor 的封装是针对输入与输出的,使得对输入或输出的操作更加的便捷

2. Tensor 内部的内存管理则是对 MixMemory 进行了包装

3. Tensor 封装所考虑的,是便于访问,因此有 offset 函数,实现索引的计算

在看代码之前,我们先把握下 tensor 封装的四个重点:

1. 内存的管理,可以使用 MixMemory 解决

2. 内存的复用,依然可以用 MixMemory 解决

3. 内存的 copy,比如说 cpu → \rightarrow gpu,gpu → \rightarrow cpu

  • 解决方案(从 caffe 上学到的思路)
  • a. 定义内存的状态,表示内存当前最新的内容在哪里(GPU/CPU/Init)
  • b. 懒分配原则,当你需要使用时,才会考虑分配内存
  • c. 获取内存地址,即表示:想拿到最新的数据,比如说 tensor.cpu 表示我想拿到最新的数据,并且把它放到 cpu 上

4. 索引的计算,比如说,我有 5d tensor(B,D,C,H,W),此时我要获取 B = 1,D = 3,C = 0,H = 5,W = 9 的位置元素属于非常基础且非常频繁的一个能力

了解完重点之后,我们再来看代码:

trt-tensor.hpp


#ifndef TRT_TENSOR_HPP
#define TRT_TENSOR_HPP

#include <string>
#include <memory>
#include <vector>
#include <map>
#include <opencv2/opencv.hpp>
#include "mix-memory.hpp"

struct CUstream_st;
typedef CUstream_st CUStreamRaw;
typedef CUStreamRaw* CUStream;

namespace TRT{

    enum class DataHead : int{
        Init   = 0,
        Device = 1,
        Host   = 2
    };

    enum class DataType : int {
        Float = 0,
        Float16 = 1,
        Int32 = 2,
        UInt8 = 3
    };

    int data_type_size(DataType dt);
    const char* data_head_string(DataHead dh);
    const char* data_type_string(DataType dt);

    class Tensor {
    public:
        Tensor(const Tensor& other) = delete;
        Tensor& operator = (const Tensor& other) = delete;

        explicit Tensor(DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
        explicit Tensor(int n, int c, int h, int w, DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
        explicit Tensor(int ndims, const int* dims, DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
        explicit Tensor(const std::vector<int>& dims, DataType dtype = DataType::Float, std::shared_ptr<MixMemory> data = nullptr, int device_id = CURRENT_DEVICE_ID);
        virtual ~Tensor();

        int numel() const;
        inline int ndims() const{return shape_.size();}
        inline int size(int index)  const{return shape_[index];}
        inline int shape(int index) const{return shape_[index];}

        inline int batch()   const{return shape_[0];}
        inline int channel() const{return shape_[1];}
        inline int height()  const{return shape_[2];}
        inline int width()   const{return shape_[3];}

        inline DataType type()                const { return dtype_; }
        inline const std::vector<int>& dims() const { return shape_; }
        inline const std::vector<size_t>& strides() const {return strides_;}
        inline int bytes()                    const { return bytes_; }
        inline int bytes(int start_axis)      const { return count(start_axis) * element_size(); }
        inline int element_size()             const { return data_type_size(dtype_); }
        inline DataHead head()                const { return head_; }

        std::shared_ptr<Tensor> clone() const;
        Tensor& release();
        Tensor& set_to(float value);
        bool empty() const;

        template<typename ... _Args>
        int offset(int index, _Args ... index_args) const{
            const int index_array[] = {index, index_args...};
            return offset_array(sizeof...(index_args) + 1, index_array);
        }

        int offset_array(const std::vector<int>& index) const;
        int offset_array(size_t size, const int* index_array) const;

        template<typename ... _Args>
        Tensor& resize(int dim_size, _Args ... dim_size_args){
            const int dim_size_array[] = {dim_size, dim_size_args...};
            return resize(sizeof...(dim_size_args) + 1, dim_size_array);
        }

        Tensor& resize(int ndims, const int* dims);
        Tensor& resize(const std::vector<int>& dims);
        Tensor& resize_single_dim(int idim, int size);
        int  count(int start_axis = 0) const;
        int device() const{return device_id_;}

        Tensor& to_gpu(bool copy=true);
        Tensor& to_cpu(bool copy=true);

        inline void* cpu() const { ((Tensor*)this)->to_cpu(); return data_->cpu(); }
        inline void* gpu() const { ((Tensor*)this)->to_gpu(); return data_->gpu(); }
        
        template<typename DType> inline const DType* cpu() const { return (DType*)cpu(); }
        template<typename DType> inline DType* cpu()             { return (DType*)cpu(); }

        template<typename DType, typename ... _Args> 
        inline DType* cpu(int i, _Args&& ... args) { return cpu<DType>() + offset(i, args...); }


        template<typename DType> inline const DType* gpu() const { return (DType*)gpu(); }
        template<typename DType> inline DType* gpu()             { return (DType*)gpu(); }

        template<typename DType, typename ... _Args> 
        inline DType* gpu(int i, _Args&& ... args) { return gpu<DType>() + offset(i, args...); }


        template<typename DType, typename ... _Args> 
        inline DType& at(int i, _Args&& ... args) { return *(cpu<DType>() + offset(i, args...)); }
        
        std::shared_ptr<MixMemory> get_data()             const {return data_;}
        std::shared_ptr<MixMemory> get_workspace()        const {return workspace_;}
        Tensor& set_workspace(std::shared_ptr<MixMemory> workspace) {workspace_ = workspace; return *this;}

        bool is_stream_owner() const {return stream_owner_;}
        CUStream get_stream() const{return stream_;}
        Tensor& set_stream(CUStream stream, bool owner=false){stream_ = stream; stream_owner_ = owner; return *this;}

        Tensor& set_mat     (int n, const cv::Mat& image);
        Tensor& set_norm_mat(int n, const cv::Mat& image, float mean[3], float std[3]);
        cv::Mat at_mat(int n = 0, int c = 0) { return cv::Mat(height(), width(), CV_32F, cpu<float>(n, c)); }

        Tensor& synchronize();
        const char* shape_string() const{return shape_string_;}
        const char* descriptor() const;

        Tensor& copy_from_gpu(size_t offset, const void* src, size_t num_element, int device_id = CURRENT_DEVICE_ID);
        Tensor& copy_from_cpu(size_t offset, const void* src, size_t num_element);

        void reference_data(const std::vector<int>& shape, void* cpu_data, size_t cpu_size, void* gpu_data, size_t gpu_size, DataType dtype);

        /**
        
        # 以下代码是python中加载Tensor
        import numpy as np

        def load_tensor(file):
            
            with open(file, "rb") as f:
                binary_data = f.read()

            magic_number, ndims, dtype = np.frombuffer(binary_data, np.uint32, count=3, offset=0)
            assert magic_number == 0xFCCFE2E2, f"{file} not a tensor file."
            
            dims = np.frombuffer(binary_data, np.uint32, count=ndims, offset=3 * 4)

            if dtype == 0:
                np_dtype = np.float32
            elif dtype == 1:
                np_dtype = np.float16
            else:
                assert False, f"Unsupport dtype = {dtype}, can not convert to numpy dtype"
                
            return np.frombuffer(binary_data, np_dtype, offset=(ndims + 3) * 4).reshape(*dims)

            **/
        bool save_to_file(const std::string& file) const;
        bool load_from_file(const std::string& file);

    private:
        Tensor& compute_shape_string();
        Tensor& adajust_memory_by_update_dims_or_type();
        void setup_data(std::shared_ptr<MixMemory> data);

    private:
        std::vector<int> shape_;
        std::vector<size_t> strides_;
        size_t bytes_    = 0;
        DataHead head_   = DataHead::Init;
        DataType dtype_  = DataType::Float;
        CUStream stream_ = nullptr;
        bool stream_owner_ = false;
        int device_id_   = 0;
        char shape_string_[100];
        char descriptor_string_[100];
        std::shared_ptr<MixMemory> data_;
        std::shared_ptr<MixMemory> workspace_;
    };
}; // namespace TRT

#endif // TRT_TENSOR_HPP

trt-tensor.cpp


#include "trt-tensor.hpp"
#include <algorithm>
#include <cuda_runtime.h>
#include "cuda-tools.hpp"
#include "simple-logger.hpp"

using namespace cv;
using namespace std;

namespace TRT{

	int data_type_size(DataType dt){
		switch (dt) {
			case DataType::Float: return sizeof(float);
			case DataType::Int32: return sizeof(int);
			case DataType::UInt8: return sizeof(uint8_t);
			default: {
				INFOE("Not support dtype: %d", dt);
				return -1;
			}
		}
	}

	inline static int get_device(int device_id){
		if(device_id != CURRENT_DEVICE_ID){
			CUDATools::check_device_id(device_id);
			return device_id;
		}

		checkRuntime(cudaGetDevice(&device_id));
		return device_id;
	}

	const char* data_head_string(DataHead dh){
		switch(dh){
			case DataHead::Init: return "Init";
			case DataHead::Device: return "Device";
			case DataHead::Host: return "Host";
			default: return "Unknow";
		}
	}

	const char* data_type_string(DataType dt){
		switch(dt){
			case DataType::Float: return "Float32";
			case DataType::Float16: return "Float16";
			case DataType::Int32: return "Int32";
			case DataType::UInt8: return "UInt8";
			default: return "Unknow";
		}
	}

	Tensor::Tensor(int n, int c, int h, int w, DataType dtype, shared_ptr<MixMemory> data, int device_id) {
		this->dtype_ = dtype;
		this->device_id_ = get_device(device_id);
		descriptor_string_[0] = 0;
		setup_data(data);
		resize(n, c, h, w);
	}

	Tensor::Tensor(const std::vector<int>& dims, DataType dtype, shared_ptr<MixMemory> data, int device_id){
		this->dtype_ = dtype;
		this->device_id_ = get_device(device_id);
		descriptor_string_[0] = 0;
		setup_data(data);
		resize(dims);
	}

	Tensor::Tensor(int ndims, const int* dims, DataType dtype, shared_ptr<MixMemory> data, int device_id) {
		this->dtype_ = dtype;
		this->device_id_ = get_device(device_id);
		descriptor_string_[0] = 0;
		setup_data(data);
		resize(ndims, dims);
	}

	Tensor::Tensor(DataType dtype, shared_ptr<MixMemory> data, int device_id){
		shape_string_[0] = 0;
		descriptor_string_[0] = 0;
		this->device_id_ = get_device(device_id);
		dtype_ = dtype;
		setup_data(data);
	}

	Tensor::~Tensor() {
		release();
	}

	const char* Tensor::descriptor() const{
		
		char* descriptor_ptr = (char*)descriptor_string_;
		int device_id = device();
		snprintf(descriptor_ptr, sizeof(descriptor_string_), 
			"Tensor:%p, %s, %s, CUDA:%d", 
			data_.get(),
			data_type_string(dtype_), 
			shape_string_, 
			device_id
		);
		return descriptor_ptr;
	}

	Tensor& Tensor::compute_shape_string(){

		// clean string
		shape_string_[0] = 0;

		char* buffer = shape_string_;
		size_t buffer_size = sizeof(shape_string_);
		for(int i = 0; i < shape_.size(); ++i){

			int size = 0;
			if(i < shape_.size() - 1)
				size = snprintf(buffer, buffer_size, "%d x ", shape_[i]);
			else
				size = snprintf(buffer, buffer_size, "%d", shape_[i]);

			buffer += size;
			buffer_size -= size;
		}
		return *this;
	}

	void Tensor::reference_data(const vector<int>& shape, void* cpu_data, size_t cpu_size, void* gpu_data, size_t gpu_size, DataType dtype){

		dtype_ = dtype;
		data_->reference_data(cpu_data, cpu_size, gpu_data, gpu_size);
		setup_data(data_);
		resize(shape);
	}

	void Tensor::setup_data(shared_ptr<MixMemory> data){
		
		data_ = data;
		if(data_ == nullptr){
			data_ = make_shared<MixMemory>(device_id_);
		}else{
			device_id_ = data_->device_id();
		}

		head_ = DataHead::Init;
		if(data_->cpu()){
			head_ = DataHead::Host;
		}

		if(data_->gpu()){
			head_ = DataHead::Device;
		}
	}

	shared_ptr<Tensor> Tensor::clone() const{
		auto new_tensor = make_shared<Tensor>(shape_, dtype_);
		if(head_ == DataHead::Init)
			return new_tensor;
		
		if(head_ == DataHead::Host){
			memcpy(new_tensor->cpu(), this->cpu(), this->bytes_);
		}else if(head_ == DataHead::Device){
			CUDATools::AutoDevice auto_device_exchange(device());
			checkRuntime(cudaMemcpyAsync(new_tensor->gpu(), this->gpu(), bytes_, cudaMemcpyDeviceToDevice, stream_));
		}
		return new_tensor;
	}

	Tensor& Tensor::copy_from_gpu(size_t offset, const void* src, size_t num_element, int device_id){

		if(head_ == DataHead::Init)
			to_gpu(false);

		size_t offset_location = offset * element_size();
		if(offset_location >= bytes_){
			INFOE("Offset location[%lld] >= bytes_[%lld], out of range", offset_location, bytes_);
			return *this;
		}

		size_t copyed_bytes = num_element * element_size();
		size_t remain_bytes = bytes_ - offset_location;
		if(copyed_bytes > remain_bytes){
			INFOE("Copyed bytes[%lld] > remain bytes[%lld], out of range", copyed_bytes, remain_bytes);
			return *this;
		}
		
		if(head_ == DataHead::Device){
			int current_device_id = get_device(device_id);
			int gpu_device_id = device();
			if(current_device_id != gpu_device_id){
				checkRuntime(cudaMemcpyPeerAsync(gpu<unsigned char>() + offset_location, gpu_device_id, src, current_device_id, copyed_bytes, stream_));
				//checkRuntime(cudaMemcpyAsync(gpu<unsigned char>() + offset_location, src, copyed_bytes, cudaMemcpyDeviceToDevice, stream_));
			}
			else{
				checkRuntime(cudaMemcpyAsync(gpu<unsigned char>() + offset_location, src, copyed_bytes, cudaMemcpyDeviceToDevice, stream_));
			}
		}else if(head_ == DataHead::Host){
			CUDATools::AutoDevice auto_device_exchange(this->device());
			checkRuntime(cudaMemcpyAsync(cpu<unsigned char>() + offset_location, src, copyed_bytes, cudaMemcpyDeviceToHost, stream_));
		}else{
			INFOE("Unsupport head type %d", head_);
		}
		return *this;
	}

	Tensor& Tensor::copy_from_cpu(size_t offset, const void* src, size_t num_element){

		if(head_ == DataHead::Init)
			to_cpu(false);

		size_t offset_location = offset * element_size();
		if(offset_location >= bytes_){
			INFOE("Offset location[%lld] >= bytes_[%lld], out of range", offset_location, bytes_);
			return *this;
		}

		size_t copyed_bytes = num_element * element_size();
		size_t remain_bytes = bytes_ - offset_location;
		if(copyed_bytes > remain_bytes){
			INFOE("Copyed bytes[%lld] > remain bytes[%lld], out of range", copyed_bytes, remain_bytes);
			return *this;
		}

		if(head_ == DataHead::Device){
			CUDATools::AutoDevice auto_device_exchange(this->device());
			checkRuntime(cudaMemcpyAsync((char*)data_->gpu() + offset_location, src, copyed_bytes, cudaMemcpyHostToDevice, stream_));
		}else if(head_ == DataHead::Host){
			//checkRuntime(cudaMemcpyAsync((char*)data_->cpu() + offset_location, src, copyed_bytes, cudaMemcpyHostToHost, stream_));
			memcpy((char*)data_->cpu() + offset_location, src, copyed_bytes);
		}else{
			INFOE("Unsupport head type %d", head_);
		}
		return *this;
	}

	Tensor& Tensor::release() {
		data_->release_all();
		shape_.clear();
		bytes_ = 0;
		head_ = DataHead::Init;
		if(stream_owner_ && stream_ != nullptr){
			CUDATools::AutoDevice auto_device_exchange(this->device());
			checkRuntime(cudaStreamDestroy(stream_));
		}
		stream_owner_ = false;
		stream_ = nullptr;
		return *this;
	}

	bool Tensor::empty() const{
		return data_->cpu() == nullptr && data_->gpu() == nullptr;
	}

	int Tensor::count(int start_axis) const {

		if(start_axis >= 0 && start_axis < shape_.size()){
			int size = 1;
			for (int i = start_axis; i < shape_.size(); ++i) 
				size *= shape_[i];
			return size;
		}else{
			return 0;
		}
	}

	Tensor& Tensor::resize(const std::vector<int>& dims) {
		return resize(dims.size(), dims.data());
	}

	int Tensor::numel() const{
		int value = shape_.empty() ? 0 : 1;
		for(int i = 0; i < shape_.size(); ++i){
			value *= shape_[i];
		}
		return value;
	}

	Tensor& Tensor::resize_single_dim(int idim, int size){

		assert(idim >= 0 && idim < shape_.size());

		auto new_shape = shape_;
		new_shape[idim] = size;
		return resize(new_shape);
	}

	Tensor& Tensor::resize(int ndims, const int* dims) {

		vector<int> setup_dims(ndims);
		for(int i = 0; i < ndims; ++i){
			int dim = dims[i];
			if(dim == -1){
				assert(ndims == shape_.size());
				dim = shape_[i];
			}
			setup_dims[i] = dim;
		}
		this->shape_ = setup_dims;

		// strides = element_size
		this->strides_.resize(setup_dims.size());
		
		size_t prev_size  = element_size();
		size_t prev_shape = 1;
		for(int i = (int)strides_.size() - 1; i >= 0; --i){
			if(i + 1 < strides_.size()){
				prev_size  = strides_[i+1];
				prev_shape = shape_[i+1];
			}
			strides_[i] = prev_size * prev_shape;
		}

		this->adajust_memory_by_update_dims_or_type();
		this->compute_shape_string();
		return *this;
	}

	Tensor& Tensor::adajust_memory_by_update_dims_or_type(){
		
		int needed_size = this->numel() * element_size();
		if(needed_size > this->bytes_){
			head_ = DataHead::Init;
		}
		this->bytes_ = needed_size;
		return *this;
	}

	Tensor& Tensor::synchronize(){ 
		CUDATools::AutoDevice auto_device_exchange(this->device());
		checkRuntime(cudaStreamSynchronize(stream_));
		return *this;
	}

	Tensor& Tensor::to_gpu(bool copy) {

		if (head_ == DataHead::Device)
			return *this;

		head_ = DataHead::Device;
		data_->gpu(bytes_);

		if (copy && data_->cpu() != nullptr) {
			CUDATools::AutoDevice auto_device_exchange(this->device());
			checkRuntime(cudaMemcpyAsync(data_->gpu(), data_->cpu(), bytes_, cudaMemcpyHostToDevice, stream_));
		}
		return *this;
	}

	Tensor& Tensor::to_cpu(bool copy) {

		if (head_ == DataHead::Host)
			return *this;

		head_ = DataHead::Host;
		data_->cpu(bytes_);

		if (copy && data_->gpu() != nullptr) {
			CUDATools::AutoDevice auto_device_exchange(this->device());
			checkRuntime(cudaMemcpyAsync(data_->cpu(), data_->gpu(), bytes_, cudaMemcpyDeviceToHost, stream_));
			checkRuntime(cudaStreamSynchronize(stream_));
		}
		return *this;
	}

	template<typename _T>
	static inline void memset_any_type(_T* ptr, size_t count, _T value){
		for (size_t i = 0; i < count; ++i)
			*ptr++ = value;
	}

	Tensor& Tensor::set_to(float value) {
		int c = count();
		if (dtype_ == DataType::Float) {
			memset_any_type(cpu<float>(), c, value);
		}
		else if(dtype_ == DataType::Int32) {
			memset_any_type(cpu<int>(), c, (int)value);
		}
		else if(dtype_ == DataType::UInt8) {
			memset_any_type(cpu<uint8_t>(), c, (uint8_t)value);
		}
		else{
			INFOE("Unsupport type: %d", dtype_);
		}
		return *this;
	}

	int Tensor::offset_array(size_t size, const int* index_array) const{

		assert(size <= shape_.size());
		int value = 0;
		for(int i = 0; i < shape_.size(); ++i){

			if(i < size)
				value += index_array[i];

			if(i + 1 < shape_.size())
				value *= shape_[i+1];
		}
		return value;
	}

	int Tensor::offset_array(const std::vector<int>& index_array) const{
		return offset_array(index_array.size(), index_array.data());
	}

	Tensor& Tensor::set_norm_mat(int n, const cv::Mat& image, float mean[3], float std[3]) {

		assert(image.channels() == 3 && !image.empty() && type() == DataType::Float);
		assert(ndims() == 4 && n < shape_[0]);
		to_cpu(false);

		int width   = shape_[3];
		int height  = shape_[2];
		float scale = 1 / 255.0;
		cv::Mat inputframe = image;
		if(inputframe.size() != cv::Size(width, height))
			cv::resize(inputframe, inputframe, cv::Size(width, height));

		if(CV_MAT_DEPTH(inputframe.type()) != CV_32F){
			inputframe.convertTo(inputframe, CV_32F, scale);
		}

		cv::Mat ms[3];
		for (int c = 0; c < 3; ++c)
			ms[c] = cv::Mat(height, width, CV_32F, cpu<float>(n, c));

		split(inputframe, ms);
		assert((void*)ms[0].data == (void*)cpu<float>(n));

		for (int c = 0; c < 3; ++c)
			ms[c] = (ms[c] - mean[c]) / std[c];
		return *this;
	}

	Tensor& Tensor::set_mat(int n, const cv::Mat& _image) {

		cv::Mat image = _image;
		assert(!image.empty() && CV_MAT_DEPTH(image.type()) == CV_32F && type() == DataType::Float);
		assert(shape_.size() == 4 && n < shape_[0] && image.channels() == shape_[1]);
		to_cpu(false);

		int width  = shape_[3];
		int height = shape_[2];
		if (image.size() != cv::Size(width, height))
			cv::resize(image, image, cv::Size(width, height));

		if (image.channels() == 1) {
			memcpy(cpu<float>(n), image.data, width * height * sizeof(float));
			return *this;
		}

		vector<cv::Mat> ms(image.channels());
		for (int i = 0; i < ms.size(); ++i) 
			ms[i] = cv::Mat(height, width, CV_32F, cpu<float>(n, i));

		cv::split(image, &ms[0]);
		assert((void*)ms[0].data == (void*)cpu<float>(n));
		return *this;
	}

	bool Tensor::save_to_file(const std::string& file) const{

		if(empty()) return false;

		FILE* f = fopen(file.c_str(), "wb");
		if(f == nullptr) return false;

		int ndims = this->ndims();
		unsigned int head[3] = {0xFCCFE2E2, ndims, static_cast<unsigned int>(dtype_)};
		fwrite(head, 1, sizeof(head), f);
		fwrite(shape_.data(), 1, sizeof(shape_[0]) * shape_.size(), f);
		fwrite(cpu(), 1, bytes_, f);
		fclose(f);
		return true;
	}

	bool Tensor::load_from_file(const std::string& file){

		FILE* f = fopen(file.c_str(), "rb");
		if(f == nullptr){
			INFOE("Open %s failed.", file.c_str());
			return false;
		}

		unsigned int head[3] = {0};
		fread(head, 1, sizeof(head), f);

		if(head[0] != 0xFCCFE2E2){
			fclose(f);
			INFOE("Invalid tensor file %s, magic number mismatch", file.c_str());
			return false;
		}

		int ndims = head[1];
		auto dtype = (TRT::DataType)head[2];
		vector<int> dims(ndims);
		fread(dims.data(), 1, ndims * sizeof(dims[0]), f);
		
		this->dtype_ = dtype;
		this->resize(dims);

		fread(this->cpu(), 1, bytes_, f);
		fclose(f);
		return true;
	}
};

头文件中首先定义了两个枚举类,分别是 DataHeadDataType,用于表示数据目前的状态(初始化、CPU、GPU)和数据类型,然后定义了一个 Tensor 类,用于获取和设置张量的属性,如维度、形状、类型等

Tensor 存在多个构造函数,比如接受 n,c,h,w 作为 shape,MixMemory 作为 data,关于 tensor 内存的管理和复用我们是通过上节课封装的 MixMemory 来实现的,因此我们重点来看 tensor 内存的拷贝和索引的计算

tensor 内存的拷贝是通过 to_cpu 和 to_gpu 函数实现的,在 to_cpu 函数中,它首先会检查当前内存数据的状态,如果当前的数据已经在 CPU 上了,它会立即返回,避免再次拷贝;如果数据不在 CPU 上,那就说明在 GPU 上,此时我们会将 head_ 设置为 CPU,通过调用 data_->cpu(byes_) 分配一块 CPU 内存,调用的是 MixMemory 的 cpu 方法,像之前说的一样,如果当前分配的 cpu 内存大小已经满足了要求,则它会直接拿之前的内存,实现内存的复用。最后通过 CUDA 的 cudaMemcpyAsync 函数从 GPU 异步复制数据到 CPU,同时还引入了流同步,确保复制完成

tensor 索引的计算是通过 offset 函数来完成的,该函数接收一个变参,然后将它转换成一个数组送到 offset_array 中进行索引计算,遵循我们之前讲解的左乘右加原则,它直接返回的是偏移量,代表 tensor 中的某个元素在内存中的位置

我们接下来看下 main.cpp 中的不同

// tensor的建立并不会立即分配内存,而是在第一次需要使用的时候进行分配
TRT::Tensor input_data({input_batch, input_channel, input_height, input_width}, TRT::DataType::Float);

// 为input关联stream,使得在同一个pipeline中执行复制操作
input_data.set_stream(stream);

首先是 input_data 的构建,我们可以利用封装好的 Tensor 来实现

// 利用opencv mat的内存地址引用,实现input与mat的关联,然后利用split函数一次性完成mat到input的复制
cv::Mat channel_based[3];
for(int i = 0; i < 3; ++i)
    // 注意这里 2 - i是实现bgr -> rgb的方式
    // 这里cpu提供的参数0是表示batch的索引是0,第二个参数表示通道的索引,因此获取的是0, 2-i通道的地址
    // 而tensor最大的好处就是帮忙计算索引,否则手动计算就得写很多代码
    channel_based[i] = cv::Mat(input_height, input_width, CV_32F, input_data.cpu<float>(0, 2-i));

cv::split(image, channel_based);

其次是预处理部分,我们采用了 opencv 中的 split 方法将三个通道分割开,这样的性能更好,这也是从 caffe 中学习到了

// 如果不写,input_data.gpu获取gpu地址时会自动进行复制
// 目的就是把内存复制变为隐式进行
input_data.to_gpu();

...

float* bindings[] = {input_data.gpu<float>(), output_data.gpu<float>()};

还有一点要注意的是,我们不需要显性的去做内存复制,在需要的时候会隐式的完成,比如 input_data.gpu 获取 gpu 的数据时,会将 cpu 的数据自动复制到 gpu 上

以上就是 tensor 封装的分析,封装好的 tensor 不用显性的去调用 cuda 的 API,接口更加高级,性能更好。更多细节还是需要多去看

这是一个相对复杂的版本的 tensor 封装,其实也可以只考虑之前提过的四条来封装 tensor,也能解决绝大部分问题

总结

本次课程学习了 tensor 的封装,对 tensor 的封装重点考虑四个方面:内存的管理、内存的复用、内存的拷贝以及索引的计算,其中前面两个可以用 MixMemory 来解决,内存的拷贝通过定义内存的状态,懒分配原则实现的,而索引的计算则是通过之前说的左乘右加完成的。tensor 的封装使得输入和输出的操作更加的便捷,索引的计算也更加的方便。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/904509.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

cuOSD(CUDA On-Screen Display Library)库的学习

目录 前言1. cuOSD1.1 Description1.2 Getting started1.3 For Python Interface1.4 Demo1.5 Performance Table 2. cuOSD案例2.1 环境配置2.2 simple案例2.3 segment案例2.4 segment2案例2.5 polyline案例2.6 comp案例2.7 perf案例 3. cuOSD浅析3.1 simple_draw函数 4. 补充知…

MacBook上有Face ID的梦想还没破灭,但是为什么迟迟不来呢

苹果公司详细介绍了Face ID与Touch ID相比的优势&#xff0c;尤其是在安全方面。因此&#xff0c;令人惊讶的是&#xff0c;该功能还没有进入MacBook&#xff0c;尤其是在显示方面。值得庆幸的是&#xff0c;一项新专利表明&#xff0c;在某个时候&#xff0c;这可能是一种可能…

《修图大杀器》PS beta 25.0最新版安装(无需魔法)和Draggan(拖拽式修图)安装

个人网站&#xff1a;https://tianfeng.space 文章目录 psbeta下载安装1.注册2.安装ps beta2.安装神经网络滤镜3.使用 Draggan下载安装 psbeta下载安装 链接&#xff1a;https://pan.baidu.com/s/1XbxSAFoXh0HDz6YbkrAzDg 提取码&#xff1a;e8pn 1.注册 https://account.a…

C++--深入类和对象(下)

续接上篇&#xff0c;接着来谈我们的类和对象的深入的知识&#xff0c;话不多说&#xff0c;我们即刻出发...... 目录 1.友元 1.1友元函数 输出流运算符的重载 1.2友元类 2.再谈构造函数 2.1构造函数体赋值和初始化列表 构造函数体赋值为何不能叫做初始化&#xff1f; …

一个模型解决所有类别的异常检测

文章目录 一、内容说明二、相关链接三、概述四、摘要1、现有方法存在的问题2、方案3、效果 五、作者的实验六、如何训练自己的数据1、数据准备2、修改配置文件3、代码优化修改4、模型训练与测试 七、结束 一、内容说明 在我接触的缺陷检测项目中&#xff0c;检测缺陷有两种方法…

TMS320C54X 的软件编程

1、DSP 编程工具与流程 DSP 的设计目标是进行数字信号处理&#xff0c;在硬件设计的基础上选择好一定的优化算法并 通过编程在 DSP 芯片上实现是 DSP 技术的核心内容。对 DSP 进行编程&#xff0c;目前最有效的语言 工具仍是 DSP 汇编语言&#xff0c;同时为方便用户用高级语言…

每日一题之数值的整数次方

数值的整数次方 描述&#xff1a; 实现函数 double Power(double base, int exponent)&#xff0c;求 base 的 exponent 次方。 注意&#xff1a; 1.保证base和exponent不同时为0。 2.不得使用库函数&#xff0c;同时不需要考虑大数问题 3.有特殊判题&#xff0c;不用考虑小数…

mysql+jdbc+servlet+java实现的学生在校疫情信息打卡系统

摘 要 I Abstract II 主 要 符 号 表 i 1 绪论 1 1.1 研究背景 1 1.2 研究目的与意义 2 1.3 国内外的研究情况 2 1.4 研究内容 2 2 系统的开发方法和关键技术 4 2.1 开发方法 4 2.1.1 结构化开发方法 4 2.1.2 面向对象方法 4 2.2 开发技术 4 2.2.1 小程序开发MINA框架 4 2.2.2 …

[Spring]事务相关

事务隔离级别 Spring 提供了以下五种事务隔离级别&#xff0c;用于控制多个事务之间的相互影响&#xff1a; DEFAULT&#xff08;默认隔离级别&#xff09;&#xff1a; 使用底层数据库的默认隔离级别。通常为数据库的默认隔离级别&#xff0c;如 MySQL 是 REPEATABLE READ&am…

逆向退货售后设计

一&#xff0c;项目背景 退货售后流程&#xff1a;涉及订单&#xff0c;票&#xff0c;款 二&#xff0c;方案一 三&#xff0c;方案二

残差网络实现

代码中涉及的图片实验数据下载地址&#xff1a;https://download.csdn.net/download/m0_37567738/88235543?spm1001.2014.3001.5501 代码&#xff1a; import torch import torch.nn as nn import torch.nn.functional as F #from utils import load_data,get_accur,train i…

只需5分钟,了解常见的四种限流算法

一、计数器算法 在指定周期内累加访问次数&#xff0c;当访问次数达到设定的阈值时&#xff0c;触发限流策略&#xff0c;当进入下一个时间周期时进行访问次数的清零。如图所示&#xff0c;我们要求3秒内的请求不要超过150次&#xff1a; 但是&#xff0c;貌似看似很“完美”的…

[mysql系列] mysql 数据库如何实现事务回滚

这里写自定义目录标题 一、事务回滚二、mysql InnoDB引擎如何实现回滚操作2.1 InnoDB引擎的 undo log2.2 具体实现2.2.1 insert 操作2.2.2 delete 操作2.2.3 update 操作 主要参考资料为&#xff1a;《Mysql 是怎样运行的》 一、事务回滚 根据原子性的定义&#xff0c;一个事务…

MySQL MVCC的详解之Read View

文章目录 概要一、基于UNDO LOG的版本链1.1、行记录结构1.2、了解UNDO LOG1.3、版本链 二、Read View2.1、判定机制 三、参考 概要 在上文中&#xff0c;我们提到了MVCC&#xff08;Multi-Version Concurrency Control)多版本并发控制&#xff0c;是通过undo log来实现的。那具…

MATLAB | 七夕节用MATLAB画个玫瑰花束叭

Hey又是一年七夕节要到了&#xff0c;每年一次直男审美MATLAB绘图大赛开始hiahiahia&#xff0c;真的这些代码越写越不知道咋写&#xff0c;又不想每年把之前的代码翻出来再发一遍&#xff0c;于是今年又对我之前写的老代码进行了点优化组合&#xff0c;整了个花球变花束&#…

计算机网络-物理层(三)-信道的极限容量

计算机网络-物理层(三)-信道的极限容量 当信号在信道中传输失真不严重时&#xff0c;在信道的输出端&#xff0c;这些信号可以被识别 当信号在信道中&#xff0c;传输失真严重时&#xff0c;在信道的输出端就难以识别 造成失真的因素 码元传输速率信号传输距离噪声干扰传输媒…

8.4.tensorRT高级(3)封装系列-infer推理封装,输入输出tensor的关联

目录 前言1. infer封装总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT 高级-infer推理封装&#xff0c;输入输出…

思维进化算法(MEA)优化BP神经网络

随着计算机科学的发展,人们借助适者生存这一进化规则,将计算机科学和生物进化结合起来,逐渐发展形成一类启发式随机搜索算法,这类算法被称为进化算法(Evolutionary Com-putation, EC)。最著名的进化算法有:遗传算法、进化策略、进化规划。与传统算法相比,进化算法的特点是群体搜…

嵌入式设备应用开发(boost库应用)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】 嵌入式开发过程中不可避免在很多情况下,需要使用到posix的api函数。一方面,这些api函数确实可以帮助我们解决一些问题;但是另外一方面,因为平台的差异,如果一段时间不做嵌入式…

Java集合利器 Map Set

Map & Set 一、概念二、Map三、Set下期预告 一、概念 Map和Set是一种专门用来进行搜索的数据结构&#xff0c;其搜索的效率与其具体的实例化子类有关。它们分别定义了两种不同的数据结构和特点&#xff1a; Map&#xff08;映射&#xff09; &#xff1a;Map是一种键值对&…