[oneAPI] 使用字符级 RNN 生成名称

news2025/1/14 1:23:19

[oneAPI] 使用字符级 RNN 生成名称

  • oneAPI特殊写法
  • 使用字符级 RNN 生成名称
    • Intel® Optimization for PyTorch
    • 数据下载
    • 加载数据并对数据进行处理
    • 创建网络
    • 训练过程
      • 准备训练
      • 训练网络
    • 结果
  • 参考资料

比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517
Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/

oneAPI特殊写法

import intel_extension_for_pytorch as ipex

# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')

rnn = RNN(n_letters, 128, n_letters)
optim = torch.optim.SGD(rnn.parameters(), lr=0.01)

'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
rnn, optim = ipex.optimize(rnn, optimizer=optim)

criterion = nn.NLLLoss()

使用字符级 RNN 生成名称

为了深入探索语言模型在分类和生成方面的卓越能力,我们特意设计了一个独特的任务。此任务的独特之处在于,它旨在综合学习多种语言的词义特征,以确保生成的内容与各种语言的词组相关性一致。

在任务的具体描述中,我们提供了一个多语言数据集,这个数据集包含多种语言的文本。通过这个数据集,我们的目标是使模型能够在生成名称时融合不同语言的特征。具体来说,我们会提供一个词的开头作为提示,然后模型将能够根据这个开头生成对应语言的名称,从而将不同语言的词意和语法特征进行完美融合。

通过这一任务,我们旨在实现一个在多语言环境中具有卓越生成和分类能力的语言模型。通过学习并融合不同语言的词义和语法特征,我们让使模型具备更广泛的应用潜力,能够在不同语境下生成准确、符合语法规则的名称。

> python sample.py Russian RUS
Rovakov
Uantov
Shavakov

> python sample.py German GER
Gerren
Ereng
Rosher

> python sample.py Spanish SPA
Salla
Parer
Allan

> python sample.py Chinese CHI
Chan
Hang
Iun

Intel® Optimization for PyTorch

在本次实验中,我们利用PyTorch和Intel® Optimization for PyTorch的强大功能,对PyTorch进行了精心的优化和扩展。这些优化举措极大地增强了PyTorch在各种任务中的性能,尤其是在英特尔硬件上的表现更加突出。通过这些优化策略,我们的模型在训练和推断过程中变得更加敏捷和高效,显著地减少了计算时间,提高了整体效能。我们通过深度融合硬件和软件的精巧设计,成功地释放了硬件潜力,使得模型的训练和应用变得更加快速和高效。这一系列优化举措为人工智能应用开辟了新的前景,带来了全新的可能性。
在这里插入图片描述

数据下载

从这里下载数据 并将其解压到当前目录。

加载数据并对数据进行处理

简而言之,有一堆data/names/[Language].txt每行都有一个名称的纯文本文件。我们将行分割成一个数组,将 Unicode 转换为 ASCII,最后得到一个字典。{language: [names …]}

from io import open
import glob
import os
import unicodedata
import string

all_letters = string.ascii_letters + " .,;'-"
n_letters = len(all_letters) + 1  # Plus EOS marker


def findFiles(path): return glob.glob(path)


# Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )


# Read a file and split into lines
def readLines(filename):
    with open(filename, encoding='utf-8') as some_file:
        return [unicodeToAscii(line.strip()) for line in some_file]


# Build the category_lines dictionary, a list of lines per category
category_lines = {}
all_categories = []
for filename in findFiles('data/names/*.txt'):
    category = os.path.splitext(os.path.basename(filename))[0]
    all_categories.append(category)
    lines = readLines(filename)
    category_lines[category] = lines

n_categories = len(all_categories)

if n_categories == 0:
    raise RuntimeError('Data not found. Make sure that you downloaded data '
                       'from https://download.pytorch.org/tutorial/data.zip and extract it to '
                       'the current directory.')

print('# categories:', n_categories, all_categories)
print(unicodeToAscii("O'Néàl"))

Output:

# categories: 18 ['Arabic', 'Chinese', 'Czech', 'Dutch', 'English', 'French', 'German', 'Greek', 'Irish', 'Italian', 'Japanese', 'Korean', 'Polish', 'Portuguese', 'Russian', 'Scottish', 'Spanish', 'Vietnamese']
O'Neal

创建网络

序列到序列网络,或 seq2seq 网络,或编码器解码器网络,是由两个称为编码器和解码器的 RNN 组成的模型。编码器读取输入序列并输出单个向量,解码器读取该向量以产生输出序列。

我添加了第二个线性层o2o(在组合隐藏层和输出层之后)以赋予其更多的功能。还有一个 dropout 层,它以给定的概率(此处为 0.1)随机将部分输入归零,通常用于模糊输入以防止过度拟合。在这里,我们在网络末端使用它来故意添加一些混乱并增加采样多样性。
在这里插入图片描述

######################################################################
# Creating the Network
# ====================
import torch
import torch.nn as nn

import intel_extension_for_pytorch as ipex


class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size

        self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(n_categories + input_size + hidden_size, output_size)
        self.o2o = nn.Linear(hidden_size + output_size, output_size)
        self.dropout = nn.Dropout(0.1)
        self.softmax = nn.LogSoftmax(dim=1)

    def forward(self, category, input, hidden):
        input_combined = torch.cat((category, input, hidden), 1)
        hidden = self.i2h(input_combined)
        output = self.i2o(input_combined)
        output_combined = torch.cat((hidden, output), 1)
        output = self.o2o(output_combined)
        output = self.dropout(output)
        output = self.softmax(output)
        return output, hidden

    def initHidden(self):
        return torch.zeros(1, self.hidden_size)

训练过程

准备训练

import random

# Random item from a list
def randomChoice(l):
    return l[random.randint(0, len(l) - 1)]

# Get a random category and random line from that category
def randomTrainingPair():
    category = randomChoice(all_categories)
    line = randomChoice(category_lines[category])
    return category, line
# One-hot vector for category
def categoryTensor(category):
    li = all_categories.index(category)
    tensor = torch.zeros(1, n_categories)
    tensor[0][li] = 1
    return tensor

# One-hot matrix of first to last letters (not including EOS) for input
def inputTensor(line):
    tensor = torch.zeros(len(line), 1, n_letters)
    for li in range(len(line)):
        letter = line[li]
        tensor[li][0][all_letters.find(letter)] = 1
    return tensor

# ``LongTensor`` of second letter to end (EOS) for target
def targetTensor(line):
    letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))]
    letter_indexes.append(n_letters - 1) # EOS
    return torch.LongTensor(letter_indexes)

为了训练过程中的方便,我们将创建一个randomTrainingExample 函数来获取随机(类别、线)对并将它们转换为所需的(类别、输入、目标)张量。

# Make category, input, and target tensors from a random category, line pair
def randomTrainingExample():
    category, line = randomTrainingPair()
    category_tensor = categoryTensor(category)
    input_line_tensor = inputTensor(line)
    target_line_tensor = targetTensor(line)
    return category_tensor, input_line_tensor, target_line_tensor

训练网络

criterion = nn.NLLLoss()

learning_rate = 0.0005

def train(category_tensor, input_line_tensor, target_line_tensor):
    target_line_tensor.unsqueeze_(-1)
    hidden = rnn.initHidden()

    rnn.zero_grad()

    loss = torch.Tensor([0]) # you can also just simply use ``loss = 0``

    for i in range(input_line_tensor.size(0)):
        output, hidden = rnn(category_tensor, input_line_tensor[i], hidden)
        l = criterion(output, target_line_tensor[i])
        loss += l

    loss.backward()

    for p in rnn.parameters():
        p.data.add_(p.grad.data, alpha=-learning_rate)

    return output, loss.item() / input_line_tensor.size(0)

为了跟踪训练需要多长时间,我添加了一个 timeSince(timestamp)返回人类可读字符串的函数:

import time
import math

def timeSince(since):
    now = time.time()
    s = now - since
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)

训练就像平常一样 - 多次调用训练并等待几分钟,打印当前时间和每个print_every 示例的损失,并存储每个plot_every示例的平均损失all_losses以供稍后绘制。

rnn = RNN(n_letters, 128, n_letters)

n_iters = 100000
print_every = 5000
plot_every = 500
all_losses = []
total_loss = 0 # Reset every ``plot_every`` ``iters``

start = time.time()

for iter in range(1, n_iters + 1):
    output, loss = train(*randomTrainingExample())
    total_loss += loss

    if iter % print_every == 0:
        print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iters * 100, loss))

    if iter % plot_every == 0:
        all_losses.append(total_loss / plot_every)
        total_loss = 0

结果

在这里插入图片描述

参考资料

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html#

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/900502.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

修改word正文样式后其他标题样式也跟着改变

目录 前言问题原因解决办法 前言 今天在用word的时候,更改了正文样式,然后其他标题的样式也随之更改,于是上网查了一下,并记录一下 问题 当修改正文样式为缩进2字符时,其他标题的样式也是缩进2字符。 原因 出现此…

VScode安装教程和中文设置

软件:Visual Studio Code 版本:2023 语言:简体中文 大小:88.48M 安装环境:Win11/Win10 硬件要求:CPU2.0GHz 内存4G(或更高) 下载链接: https://pan.baidu.com/s/1jpMsGkoXZ0MHFcCWH_…

Linux学习之Telnet明文漏洞

yum install telnet telnet-server xinetd -y安装软件。 systemctl start xinetd.service开启xinetd,systemctl start telnet.socket开启telnet。 xinetd来监控端口,然后把数据传给telnet。 ifconfig eth0看一下eth0网卡信息,。 iptable…

【前端】快速掌握HTML+CSS核心知识点

文章目录 1.HTML核心基础知识1.1.编写第一个HTML网页1.2.超链接a标签和路径1.3.图像img标签的用法1.4.表格table标签用法1.5.列表ul、ol、dl标签用法1.6.表单form标签用法1.7.区块标签和行内标签用法 2.CSS核心基础知识2.1.CSS标签选择器viewport布局2.2.CSS样式的几种写法2.3.…

【C# 基础精讲】LINQ to Objects查询

LINQ to Objects是LINQ技术在C#中的一种应用,它专门用于对内存中的对象集合进行查询和操作。通过使用LINQ to Objects,您可以使用统一的语法来查询、过滤、排序、分组等操作各种.NET对象。本文将详细介绍LINQ to Objects的基本概念、常见的操作和示例&am…

中华儿慈会爱健康专项基金“爱的对焦”公益项目落地广西南宁

爱护我们的眼睛,让世界更“睛”彩。中华少年儿童救助慈善基金会爱健康专项基金携手爱心企业郑州科瑞医疗在广西南宁市西乡塘区衡阳北社区小区居民心灵驿站隆重举行了“爱的对焦”公益项目青少年近视防控爱心服务站授牌仪式。 中华儿慈会副秘书长卫中、广西壮族自治…

wxPython使用matplotlib绘制动态曲线

1.思路 我们创建了一个继承自wx.Frame的自定义窗口类MyFrame。在MyFrame的构造函数中,我们创建了一个matplotlib的Figure对象和一个FigureCanvas对象,用于在窗口中显示绘图结果。然后,我们使用numpy生成了一个包含100个点的x轴坐标数组self.…

Python入门【内存管理机制、Python缓存机制、垃圾回收机制、分代回收机制】(三十二)

👏作者简介:大家好,我是爱敲代码的小王,CSDN博客博主,Python小白 📕系列专栏:python入门到实战、Python爬虫开发、Python办公自动化、Python数据分析、Python前后端开发 📧如果文章知识点有错误…

Java IO流(二)IO模型(BIO|NIO|AIO)

概述 Java IO模型同步阻塞IO(BIO)、同步非阻塞IO(NIO)、异步非阻塞IO(AIO/NIO2),Java中的BIO、NIO和AIO理解为是Java语言对操作系统的各种IO模型的封装 IO模型 BIO(Blocking I/O) 概述 BIO是一种同步并阻…

『SpringBoot 源码分析』run() 方法执行流程:(1)初始化 SpringApplication 、上下文环境、应用上下文

『SpringBoot 源码分析』run() 方法执行流程:(1)初始化 SpringApplication 、上下文环境、应用上下文 基于 2.2.9.RELEASE问题:当方法进行了注释标记之后,springboot 又是怎么注入到容器中并创建类呢? 首…

Java入门必备|有你想知道的代码技巧

前言 本文主要分享记录学习Java时的敲代码大法,一步步与idea这个软件磨合,让它为我们敲代码这条路提供更便捷的帮助(雀食好用哈) 一.psvm 很多刚上手IJ软件,就被main()方法给折服了,这段代码量十分大 当…

常见指令以及权限理解

常见指令以及权限理解 命令格式: command [-options] parameter1 parameter1 命令 选项 参数1 参数2 1.command为命令名称,例如变化目录的cd等 2.中括号[ ]实际在命令中是不存在的,这个中括号代表可选,通常选项前面会添加一个符号…

Linux命令200例:clock的具体应用,设置系统的时钟时间、硬件时钟和定时器等相关信息

🏆作者简介,黑夜开发者,全栈领域新星创作者✌。CSDN专家博主,阿里云社区专家博主,2023年6月csdn上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师,项目技术负责人。 &…

缺少或找不到vcruntime140_1.dll的解决方法

某天,当我准备打开电脑上的一个应用程序时,突然收到一个错误提示,显示缺少了vcruntime140_1.dll文件。这个文件是一个重要的系统组件,它的丢失导致了我无法正常运行该应用程序。于是,我开始了一场寻找和修复旅程。然而…

“深度学习”学习日记:Tensorflow实现VGG每一个卷积层的可视化

2023.8.19 深度学习的卷积对于初学者是非常抽象,当时在入门学习的时候直接劝退一大班人,还好我坚持了下来。可视化时用到的图片(我们学校的一角!!!)以下展示了一个卷积和一次Relu的变化 作者使…

leetcode 387.字符串中第一个唯一字符

⭐️ 题目描述 🌟 leetcode链接:https://leetcode.cn/problems/first-unique-character-in-a-string/description/ 思路: 比较优的方式使用相对映射记录的方式。在 ASCII 表中小写字母 -97 就是 0 - 25。在依次从前遍历查找即可。需要注意的…

论文笔记:Continuous Trajectory Generation Based on Two-Stage GAN

2023 AAAI 1 intro 1.1 背景 建模人类个体移动模式并生成接近真实的轨迹在许多应用中至关重要 1)生成轨迹方法能够为城市规划、流行病传播分析和交通管控等城市假设分析场景提供仿仿真数据支撑2)生成轨迹方法也是目前促进轨迹数据开源共享与解决轨迹数…

十六、Spring Cloud Sleuth 分布式请求链路追踪

目录 一、概述1、为什么出出现这个技术?需要解决哪些问题2、是什么?3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术?需要解决哪些问题 2、是什么? 官网&am…

RingBuffer 环形缓冲区----镜像指示位

文字和图片参考和来自这些文章: 大疆嵌入式软件编程题找鞍点_已知循环缓冲区是一个可以无限循环读写的缓冲区,当缓冲区满了还继续写的话就会覆_一禅的师兄的博客-CSDN博客 ring buffer,一篇文章讲透它? - 知乎 (zhihu.com) 1 概述 1.1 什…