“深度学习”学习日记:Tensorflow实现VGG每一个卷积层的可视化

news2024/11/15 14:04:20

2023.8.19

深度学习的卷积对于初学者是非常抽象,当时在入门学习的时候直接劝退一大班人,还好我坚持了下来。可视化时用到的图片(我们学校的一角!!!)以下展示了一个卷积和一次Relu的变化

 作者使用的GPU是RTX 3050ti 在这张图像上已经出现了Cuda out of memory了。防止其他                                            图片出现类似情况:附上这张cat.jpg可以完成实验

             

代码是Copy大神的,用tensorflow1写的,使用tensoflow2的伙伴们,记得添上:

import tensorflow.compat.v1 as tf

Code:

# coding: utf-8

# # 使用预训练的VGG网络

# In[1]:

import scipy.io
import numpy as np
import os
import scipy.misc
import matplotlib.pyplot as plt
import tensorflow as tf
import imageio

import tensorflow.compat.v1 as tf


# get_ipython().magic(u'matplotlib inline')
print("所有包载入完毕")

# In[2]:

# 下载预先训练好的vgg-19模型,为Matlab的.mat格式,之后会用scipy读取
# (注意此版本模型与此处http://www.vlfeat.org/matconvnet/pretrained/最新版本不同)
import os.path

if not os.path.isfile('./data/imagenet-vgg-verydeep-19.mat'):
    os.system(
        u'wget -O data/imagenet-vgg-verydeep-19.mat http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat')
    # get_ipython().system(u'wget -O data/imagenet-vgg-verydeep-19.mat http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-verydeep-19.mat')


# # 定义网络

# In[3]:

def net(data_path, input_image):
    layers = (
        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
        'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
        'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
        'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
        'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
        'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
        'relu5_3', 'conv5_4', 'relu5_4'
    )
    data = scipy.io.loadmat(data_path)
    mean_pixel = [103.939, 116.779, 123.68]
    weights = data['layers'][0]
    net = {}
    current = input_image
    for i, name in enumerate(layers):
        kind = name[:4]
        if kind == 'conv':
            kernels, bias = weights[i][0][0][0][0]
            # matconvnet: weights are [width, height, in_channels, out_channels]
            # tensorflow: weights are [height, width, in_channels, out_channels]
            kernels = np.transpose(kernels, (1, 0, 2, 3))
            bias = bias.reshape(-1)
            current = _conv_layer(current, kernels, bias)
        elif kind == 'relu':
            current = tf.nn.relu(current)
        elif kind == 'pool':
            current = _pool_layer(current)
        net[name] = current
    assert len(net) == len(layers)
    return net, mean_pixel, layers


print("Network for VGG ready")


# # 定义模型

# In[4]:

def _conv_layer(input, weights, bias):
    conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
                        padding='SAME')
    return tf.nn.bias_add(conv, bias)


def _pool_layer(input):
    return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
                          padding='SAME')


def preprocess(image, mean_pixel):
    return image - mean_pixel


def unprocess(image, mean_pixel):
    return image + mean_pixel


def imread(path):
    # return scipy.misc.imread(path).astype(np.float)
    return imageio.imread(path)


def imsave(path, img):
    img = np.clip(img, 0, 255).astype(np.uint8)
    scipy.misc.imsave(path, img)


print("Functions for VGG ready")

# # 运行

# In[5]:

cwd = os.getcwd()
VGG_PATH = cwd + "/data/imagenet-vgg-verydeep-19.mat"
IMG_PATH = cwd + "/images/cat.jpg"
input_image = imread(IMG_PATH)
shape = (1,) + input_image.shape  # (h, w, nch) =>  (1, h, w, nch)
with tf.Graph().as_default(), tf.Session() as sess:
    image = tf.placeholder('float', shape=shape)
    nets, mean_pixel, all_layers = net(VGG_PATH, image)
    input_image_pre = np.array([preprocess(input_image, mean_pixel)])
    layers = all_layers  # For all layers
    # layers = ('relu2_1', 'relu3_1', 'relu4_1')
    for i, layer in enumerate(layers):
        print("[%d/%d] %s" % (i + 1, len(layers), layer))
        features = nets[layer].eval(feed_dict={image: input_image_pre})

        print(" Type of 'features' is ", type(features))
        print(" Shape of 'features' is %s" % (features.shape,))
        # Plot response 
        if 1:
            plt.figure(i + 1, figsize=(10, 5))
            plt.matshow(features[0, :, :, 0], cmap=plt.cm.gray, fignum=i + 1)
            plt.title("" + layer)
            plt.colorbar()
            plt.show()

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/900474.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

leetcode 387.字符串中第一个唯一字符

⭐️ 题目描述 🌟 leetcode链接:https://leetcode.cn/problems/first-unique-character-in-a-string/description/ 思路: 比较优的方式使用相对映射记录的方式。在 ASCII 表中小写字母 -97 就是 0 - 25。在依次从前遍历查找即可。需要注意的…

论文笔记:Continuous Trajectory Generation Based on Two-Stage GAN

2023 AAAI 1 intro 1.1 背景 建模人类个体移动模式并生成接近真实的轨迹在许多应用中至关重要 1)生成轨迹方法能够为城市规划、流行病传播分析和交通管控等城市假设分析场景提供仿仿真数据支撑2)生成轨迹方法也是目前促进轨迹数据开源共享与解决轨迹数…

十六、Spring Cloud Sleuth 分布式请求链路追踪

目录 一、概述1、为什么出出现这个技术?需要解决哪些问题2、是什么?3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术?需要解决哪些问题 2、是什么? 官网&am…

RingBuffer 环形缓冲区----镜像指示位

文字和图片参考和来自这些文章: 大疆嵌入式软件编程题找鞍点_已知循环缓冲区是一个可以无限循环读写的缓冲区,当缓冲区满了还继续写的话就会覆_一禅的师兄的博客-CSDN博客 ring buffer,一篇文章讲透它? - 知乎 (zhihu.com) 1 概述 1.1 什…

Python可视化在量化交易中的应用(15)_Seaborn箱线图小提琴图

Seaborn中箱线图和小提琴图的绘制方法 箱线图和小提琴图常被用来观测数据的中位数、上下四分位数分布范围以及异常值的分布情况。 seaborn中绘制箱线图使用的是sns.boxplot()函数。 sns.boxplot(x,y,hue,data,order,hue_order,orient,color,palette,saturation0.75,width0.8,do…

C语言 功能型API --------------------strcat()

NAME strcat, strncat - concatenate two strings 头文件 SYNOPSIS #include <string.h> 函数原型&#xff1a; char *strcat(char *dest, const char *src); 功能&#xff1a; 在字符串dest的末尾将字符串src拼接上去 #include <stdio.h> #inc…

227、仿真-基于51单片机锅炉热电偶PT100铂电阻温度控制Proteus仿真设计(程序+Proteus仿真+原理图+流程图+元器件清单+配套资料等)

毕设帮助、开题指导、技术解答(有偿)见文未 目录 一、设计功能 二、Proteus仿真图 三、原理图 四、程序源码 资料包括&#xff1a; 需要完整的资料可以点击下面的名片加下我&#xff0c;找我要资源压缩包的百度网盘下载地址及提取码。 方案选择 单片机的选择 方案一&…

LlamaGPT -基于Llama 2的自托管类chatgpt聊天机器人

LlamaGPT一个自托管、离线、类似 ChatGPT 的聊天机器人&#xff0c;由 Llama 2 提供支持。100% 私密&#xff0c;不会有任何数据离开你的设备。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 1、如何安装LlamaGPT LlamaGPT可以安装在任何x86或arm64系统上。 首先确保…

网络编程(TCP和UDP的基础模型)

一、TCP基础模型&#xff1a; tcp Ser&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <arpa/inet.h> #include <netinet/in.h> #include <string.h> #include <head.h>#define PORT 88…

探索无限创造力的星辰大道,画出想象的浩瀚宇宙!-turtle

介绍 视频教程地址在此&#xff1a;https://www.bilibili.com/video/BV1Pm4y1H7Tb/ 大家好&#xff0c;欢迎来到本视频&#xff01;今天&#xff0c;我们将一同探索Python编程世界中的一个有趣而创意的库——Turtle库。无需专业绘画技能&#xff0c;你就可以轻松地用代码绘制…

docker的安装与基础使用

一.docker简介 1&#xff09;什么是docker Docker是一种用于构建、打包和运行应用程序的开源平台。它基于操作系统级虚拟化技术&#xff0c;可以将应用程序和其依赖的库、环境等资源打包到一个可移植的容器中&#xff0c;形成一个轻量级、独立的可执行单元。 开发者在本地编…

QT TLS initialization failed问题(已解决) QT基础入门【网络编程】openssl

问题: qt.network.ssl: QSslSocket::connectToHostEncrypted: TLS initialization failed 这个问题的出现主要是使用了https请求:HTTPS ≈ HTTP + SSL,即有了加密层的HTTP 所以Qt 组件库需要OpenSSL dll 文件支持HTTPS 解决: 1.加入以下两行代码获取QT是否支持opensll以…

【学会动态规划】单词拆分(24)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

向gitee推送代码

目录 一、Gitee创建仓库 二、将刚刚创建的仓库放到虚拟机上 2.1 https 方式克隆仓库 2.2 ssh的方式克隆仓库 三、本地开发&#xff0c;推送 3.1 查看是否有远程库 3.2 推送代码 3.3 查看是否推送成功 一、Gitee创建仓库 二、将刚刚创建的仓库放到虚拟机上 2.1 https 方式…

codesys和HMI通讯

codesys可视化有2种&#xff1a; 网页web // 类似于路由器管理那样&#xff0c;登录网页就能操作 本地HMI // 其他品牌的触摸屏 符号配置&#xff1a; 1 编译需要的变量 2 导出XML文件 3 触摸屏软件加载XML文件

kafka--kafka的基本概念-topic和partition

一、kafka的基本概念-topic和partition 1、topic &#xff08;主题 &#xff09; topic是逻辑概念 以Topic机制来对消息进行分类的&#xff0c;同一类消息属于同一个Topic&#xff0c;你可以将每个topic看成是一个消息队列。 生产者&#xff08;producer&#xff09;将消息发…

我只是用了个“笨”方法,一个月后不再惧怕英文文档

在日常工作中&#xff0c;尤其是程序员时时刻刻都会与英文打交道&#xff0c;虽然我们尽可能的在互联网和中文书籍中寻找我们需要的信息&#xff0c;但是&#xff0c;有时候总是不尽人意。对待翻译过来的文档或者书本可能有些定义依然无法明确理解&#xff0c;回到它原有的场景…

【二叉树前沿篇】树

【二叉树前沿篇】树 1 树的概念2. 树的相关概念3. 树的表示4. 树在实际中的运用&#xff08;表示文件系统的目录树结构&#xff09; 1 树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一个具有层次关系的集合。把它叫做树是…

Django模型基础

文章目录 一、models字段类型概述属性命名限制使用方式逻辑删除和物理删除常用字段类型 二、常用字段参数常用字段选项(通过字段选项&#xff0c;可以实现对字段的约束) 实践创建模型执行迁移命令 并 创建超级用户登录admin后台添加文件和图片字段定义模型字段和约束及在Admin后…

C#生产流程控制(串行,并行混合执行)

开源框架CsGo https://gitee.com/hamasm/CsGo?_fromgitee_search 文档资料&#xff1a; https://blog.csdn.net/aa2528877987/article/details/132139337 实现效果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37…