Android 并发编程--阻塞队列和线程池

news2024/11/26 13:26:09

一、阻塞队列

队列是一种特殊的线性表,特殊之处在于它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作,和栈一样,队列是一种操作受限制的线性表。进行插入操作的端称为队尾,进行删除操作的端称为队头。

在队列中插入一个队列元素称为入队,从队列中删除一个队列元素称为出队。因为队列只允许在一端插入,在另一端删除,所以只有最早进入队列的元素才能最先从队列中删除,故队列又称为先进先出(FIFO—first in first out)线性表。

什么是阻塞队列?

1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。
2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。

在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序整体处理数据的速度。

在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。

为了解决这种生产消费能力不均衡的问题,便有了生产者和消费者模式。生产者和消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通信,而是通过阻塞队列来进行通信,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。

阻塞队列常用于生产者和消费者的场景,生产者是向队列里添加元素的线程,消费者是从队列里取元素的线程。阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。

抛出异常:当队列满时,如果再往队列里插入元素,会抛出IllegalStateException("Queuefull")异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。

返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。

一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者线程,直到队列不为空。

超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就会退出。

常用阻塞队列:

ArrayBlockingQueue:一个由数组结构组成的有界阻塞队列。

LinkedBlockingQueue:一个由链表结构组成的有界阻塞队列。

PriorityBlockingQueue:一个支持优先级排序的无界阻塞队列。

DelayQueue:一个使用优先级队列实现的无界阻塞队列。

SynchronousQueue:一个不存储元素的阻塞队列。

LinkedTransferQueue:一个由链表结构组成的无界阻塞队列。

LinkedBlockingDeque:一个由链表结构组成的双向阻塞队列。

以上的阻塞队列都实现了BlockingQueue接口,也都是线程安全的。

有界和无界?

有限队列就是长度有限,满了以后生产者会阻塞,无界队列就是里面能放无数的东西而不会因为队列长度限制被阻塞,当然空间限制来源于系统资源的限制,如果处理不及时,导致队列越来越大越来越大,超出一定的限制致使内存超限,会导致 OOM 。

无界也会阻塞?因为阻塞不仅仅体现在生产者放入元素时会阻塞,消费者拿取元素时,如果没有元素,同样也会阻塞。

ArrayBlockingQueue

是一个用数组实现的有界阻塞队列。此队列按照先进先出(FIFO)的原则对元素进行排序。默认情况下不保证线程公平的访问队列,所谓公平访问队列是指阻塞的线程,可以按照阻塞的先后顺序访问队列,即先阻塞线程先访问队列。非公平性是对先等待的线程是非公平的,当队列可用时,阻塞的线程都可以争夺访问队列的资格,有可能先阻塞的线程最后才访问队列。初始化时有参数可以设置。

LinkedBlockingQueue

是一个用链表实现的有界阻塞队列。此队列的默认和最大长度为Integer.MAX_VALUE。此队列按照先进先出的原则对元素进行排序。

Array实现和Linked实现的区别

1. 队列中锁的实现不同

ArrayBlockingQueue实现的队列中的锁是没有分离的,即生产和消费用的是同一个锁;
LinkedBlockingQueue实现的队列中的锁是分离的,即生产用的是putLock,消费是takeLock。

2. 在生产或消费时操作不同

ArrayBlockingQueue实现的队列中在生产和消费的时候,是直接将枚举对象插入或移除的;
LinkedBlockingQueue实现的队列中在生产和消费的时候,需要把枚举对象转换为Node<E>进行插入或移除,会影响性能。

3. 队列大小初始化方式不同

ArrayBlockingQueue实现的队列中必须指定队列的大小;
LinkedBlockingQueue实现的队列中可以不指定队列的大小,但是默认是Integer.MAX_VALUE。

PriorityBlockingQueue

PriorityBlockingQueue是一个支持优先级的无界阻塞队列。默认情况下元素采取自然顺序升序排列。也可以自定义类实现compareTo()方法来指定元素排序规则,或者初始化PriorityBlockingQueue时,指定构造参数Comparator来对元素进行排序。需要注意的是不能保证同优先级元素的顺序。

DelayQueue

是一个支持延时获取元素的无界阻塞队列。队列使用PriorityQueue来实现。队列中的元素必须实现Delayed接口,在创建元素时可以指定多久才能从队列中获取当前元素。只有在延迟期满时才能从队列中提取元素。

DelayQueue运用在以下应用场景:

缓存系统的设计:可以用DelayQueue保存缓存元素的有效期,使用一个线程循环查询DelayQueue,一旦能从DelayQueue中获取元素时,表示缓存有效期到了。

SynchronousQueue

是一个不存储元素的阻塞队列。每一个put操作必须等待一个take操作,否则不能继续添加元素。SynchronousQueue可以看成是一个传球手,负责把生产者线程处理的数据直接传递给消费者线程。队列本身并不存储任何元素,非常适合传递性场景。SynchronousQueue的吞吐量高于LinkedBlockingQueue和ArrayBlockingQueue。

二、线程池

为什么要用线程池? 

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理地使用线程池能够带来3个好处。

第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。

第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。假设一个服务器完成一项任务所需时间为:T1 创建线程时间,T2 在线程中执行任务的时间,T3 销毁线程时间。   如果:T1 + T3 远大于 T2,则可以采用线程池,以提高服务器性能。线程池技术正是关注如何缩短或调整T1,T3时间的技术,从而提高服务器程序性能的。它把T1,T3分别安排在服务器程序的启动和结束的时间段或者一些空闲的时间段,这样在服务器程序处理客户请求时,不会有T1,T3的开销了。

第三:提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。

ThreadPoolExecutor 的类关系

Executor是一个接口,它是Executor框架的基础,它将任务的提交与任务的执行分离开来。

ExecutorService接口继承了Executor,在其上做了一些shutdown()、submit()的扩展,可以说是真正的线程池接口;

AbstractExecutorService抽象类实现了ExecutorService接口中的大部分方法;

ThreadPoolExecutor是线程池的核心实现类,用来执行被提交的任务。

ScheduledExecutorService接口继承了ExecutorService接口,提供了带"周期执行"功能ExecutorService;

ScheduledThreadPoolExecutor是一个实现类,可以在给定的延迟后运行命令,或者定期执行命令。ScheduledThreadPoolExecutor比Timer更灵活,功能更强大。 

线程池的创建各个参数含义

public ThreadPoolExecutor(int corePoolSize,
	int maximumPoolSize,long keepAliveTime,TimeUnit unit,
	BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,
	RejectedExecutionHandler handler)

corePoolSize

线程池中的核心线程数,当提交一个任务时,线程池创建一个新线程执行任务,直到当前线程数等于corePoolSize;如果当前线程数为corePoolSize,继续提交的任务被保存到阻塞队列中,等待被执行;如果执行了线程池的prestartAllCoreThreads()方法,线程池会提前创建并启动所有核心线程。

maximumPoolSize

线程池中允许的最大线程数。如果当前阻塞队列满了,且继续提交任务,则创建新的线程执行任务,前提是当前线程数小于maximumPoolSize。

keepAliveTime

线程空闲时的存活时间,即当线程没有任务执行时,继续存活的时间。默认情况下,该参数只在线程数大于corePoolSize时才有用。

TimeUnit

keepAliveTime的时间单位。

workQueue

workQueue必须是BlockingQueue阻塞队列。当线程池中的线程数超过它的corePoolSize的时候,线程会进入阻塞队列进行阻塞等待。通过workQueue,线程池实现了阻塞功能。

一般来说,我们应该尽量使用有界队列,因为使用无界队列作为工作队列会对线程池带来如下影响:

1)当线程池中的线程数达到corePoolSize后,新任务将在无界队列中等待,因此线程池中的线程数不会超过corePoolSize。
2)由于1,使用无界队列时maximumPoolSize将是一个无效参数。
3)由于1和2,使用无界队列时keepAliveTime将是一个无效参数。
4)更重要的,使用无界queue可能会耗尽系统资源,有界队列则有助于防止资源耗尽,同时即使使用有界队列,也要尽量控制队列的大小在一个合适的范围。

threadFactory

创建线程的工厂,通过自定义的线程工厂可以给每个新建的线程设置一个具有识别度的线程名,当然还可以更加自由的对线程做更多的设置,比如设置所有的线程为守护线程。

Executors静态工厂里默认的threadFactory,线程的命名规则是“pool-数字-thread-数字”。

RejectedExecutionHandler

线程池的饱和策略,当阻塞队列满了,且没有空闲的工作线程,如果继续提交任务,必须采取一种策略处理该任务,线程池提供了4种策略:

1)AbortPolicy:直接抛出异常,默认策略;
2)CallerRunsPolicy:用调用者所在的线程来执行任务;
3)DiscardOldestPolicy:丢弃阻塞队列中靠最前的任务,并执行当前任务;
4)DiscardPolicy:直接丢弃任务;

当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。

线程池的工作机制 

1)如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。
2)如果运行的线程等于或多于corePoolSize,则将任务加入BlockingQueue。
3)如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务。
4)如果创建新线程将使当前运行的线程超出maximumPoolSize,任务将被拒绝,并调用RejectedExecutionHandler.rejectedExecution()方法。

提交任务 

execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功。

submit()方法用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个future对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。

关闭线程池

可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是它们存在一定的区别,shutdownNow首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而shutdown只是将线程池的状态设置成SHUTDOWN状态,然后中断所有没有正在执行任务的线程。

只要调用了这两个关闭方法中的任意一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法会返回true。至于应该调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown方法来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow方法。

合理地配置线程池

要想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析:

1)任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
2)任务的优先级:高、中和低。
3)任务的执行时间:长、中和短。
4)任务的依赖性:是否依赖其他系统资源,如数据库连接。

性质不同的任务可以用不同规模的线程池分开处理。

CPU密集型任务应配置尽可能小的线程,如配置Ncpu+1个线程的线程池。由于IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*Ncpu。

混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者可以使用优先级队列,让执行时间短的任务先执行。

建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点。

如果当时我们设置成无界队列,那么线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/877858.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

TCP消息传输可靠性保证

TCP链接与断开 -- 三次握手&四次挥手 三次握手 TCP 提供面向有连接的通信传输。面向有连接是指在数据通信开始之前先做好两端之间的准备工作。 所谓三次握手是指建立一个 TCP 连接时需要客户端和服务器端总共发送三个包以确认连接的建立。在socket编程中&#xff0c;这一…

NLP文本匹配任务Text Matching [无监督训练]:SimCSE、ESimCSE、DiffCSE 项目实践

NLP文本匹配任务Text Matching [无监督训练]&#xff1a;SimCSE、ESimCSE、DiffCSE 项目实践 文本匹配多用于计算两个文本之间的相似度&#xff0c;该示例会基于 ESimCSE 实现一个无监督的文本匹配模型的训练流程。文本匹配多用于计算两段「自然文本」之间的「相似度」。 例如…

【ARM】Day1

作业1&#xff1a;思维导图 作业2&#xff1a; 作业3&#xff1a;用for循环实现1~100之间和5050

【Axure高保真原型】通过输入框动态控制环形图

今天和大家分享通过输入框动态控制环形图的原型模板&#xff0c;在输入框里维护项目数据&#xff0c;可以自动生成对应的环形图&#xff0c;鼠标移入对应扇形&#xff0c;可以查看对应数据。使用也非常方便&#xff0c;只需要修改输入框里的数据&#xff0c;或者复制粘贴文本&a…

Go语言为何强大?Python性能差为何霸榜编程语言第一?

目录 Go 语言为何强大 Go、C、C、Java、python做个简单的性能比较 Python底层是如何调用C代码的 为什么python在数据科学、机器学习和自动化较其他语言有优势 对一名软件工程师而言&#xff0c;语言虽然只是一门工具&#xff0c;往往一个软件工程师身上都会写好几门&#x…

MQTT基础入门与资料收集

文章目录 目的基础入门MQTT相关软件MQTT客户端软件MQTT Broker&#xff08;服务器&#xff09;软件 MQTT编程总结 目的 最近项目中涉及到MQTT相关内容&#xff0c;在此对相关内容做个基础的梳理。 基础入门 MQTT官网&#xff1a; https://mqtt.org/ MQTT是用于物联网&#x…

十大经典排序算法

目录 前言 冒泡排序 选择排序 插入排序 希尔排序 归并排序 快速排序 堆排序 计数排序 桶排序 基数排序 十大排序之间的比较 总结 前言 学了数据结构之后一直没有进行文字性的总结&#xff0c;现在趁着还有点时间把相关排序的思路和代码实现来写一下。概念的话网上…

【LeetCode】307 . 区域和检索 - 数组可修改

307 . 区域和检索 - 数组可修改 区间和解题思路 这是一道很经典的题目&#xff0c;通常还能拓展出一大类问题。 针对不同的题目&#xff0c;我们有不同的方案可以选择&#xff08;假设我们有一个数组&#xff09;&#xff1a; 数组不变&#xff0c;求区间和&#xff1a;「前缀和…

多线程(进阶)

一、常见的锁策略 1.1读写锁 多线程之间&#xff0c;数据的读取方之间不会产生线程安全问题&#xff0c;但数据的写入方互相之间以及和读者之间都需 要进行互斥。如果两种场景下都用同一个锁&#xff0c;就会产生极大的性能损耗。所以读写锁因此而产生。 读写锁&#xff08;r…

高通清库存芯片大降价,由于手机复苏不及预期

KlipC报道&#xff1a;8月14日&#xff0c;高通为刺激客户拉货意愿并加快出清库存&#xff0c;近期也开启了降价模式&#xff0c;锁定中低端 5G 手机芯片。 KlipC的合伙人Andi D指出高通在非苹中高端手机市场一直处于领先地位&#xff0c;因此本次降价聚焦在中低阶领域&#xf…

生成模型的三个挑战:成功部署或吓跑用户?

一、说明 目前在文本和图像领域中&#xff0c;统治江湖的有六大门派&#xff0c;他们是&#xff1a;OpenAI&#xff0c;Google&#xff0c;Microsoft&#xff0c;Midjounery&#xff0c;StabilityAI&#xff0c;CharecterAI. 每个人都在竞相为文本到文本&#xff0c;文本到图像…

万物识别RAM:图像识别模型,Zero-Shot超越有监督

文章目录 RAM的优势RAM的创新点总结与展望参考文献大语言模型(Large Language Models)已经给自然语言处理(NLP)领域带来了新的革命。在计算机视觉(CV)领域,Facebook近期推出的Segment Anything Model(SAM)工作,在视觉定位(Localization)任务上取得了令人振奋的结果…

怎么对视频进行压缩?

怎么对视频进行压缩&#xff1f;视频压缩&#xff0c;我们都知道是将视频文件进行压缩变小的过程&#xff0c;是我们日常办公中较为常用的手段。现如今&#xff0c;在视频技术不断发展与创新的基础上&#xff0c;视频分辨率也在不断提高&#xff0c;进而导致文件占有量也非常大…

vue-cli前端工程化——创建vue-cli工程 router版本的创建 目录结构 案例初步

目录 引出创建vue-cli前端工程vue-cli是什么自动构建创建vue-cli项目选择Vue的版本号 手动安装进行选择创建成功 手动创建router版多了一个router 运行测试bug解决 Vue项目结构main.jspackage.jsonvue.config.js Vue项目初步hello案例 总结 引出 1.vue-cli是啥&#xff0c;创建…

Docker中部署Nginx

1.Nginx部署需求 2.操作教程 3.实际步骤 把配置粘过来。

什么是伪类选择器?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 伪类选择器⭐ 一些常见的伪类选择器示例&#xff1a;:hover:active:focus:nth-child(n):first-child 和 :last-child ⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何…

深入了解 Rancher Desktop 设置

Rancher Desktop 设置的全面概述 Rancher Desktop 拥有方便、强大的功能&#xff0c;是最佳的开发者工具之一&#xff0c;也是在本地构建和部署 Kubernetes 的最快捷方式。 本文将介绍 Rancher Desktop 的功能和特性&#xff0c;以及 Rancher Desktop 作为容器管理平台和本地…

HTML5+CSS3查缺补漏

浏览器的渲染过程 JS加载执行 普通js/sync&#xff1a;阻塞 DOM加载解析 async&#xff1a;下载完就执行&#xff0c;无依赖 <script type"text/javascript" src"x.min.js" async"async"></script> defer&#xff1a;渲染完再执行…

【从零学习python 】19. 循环遍历列表和列表嵌套的应用

文章目录 列表的循环遍历1. 使用while循环2. 使用for循环3. 交换2个变量的值1. 列表嵌套2. 应用 进阶案例 列表的循环遍历 1. 使用while循环 为了更有效率的输出列表的每个数据&#xff0c;可以使用循环来完成 namesList [xiaoWang,xiaoZhang,xiaoHua] length len(namesLi…

【奶奶看了都会】2分钟学会制作最近特火的ikun幻术图

1.效果展示 最近ikun幻术图特别火啊&#xff0c;在网上能找到各种各样的ikun姿势图片&#xff0c;这些图片都是AI绘制的&#xff0c;能和风景完美融合在一起&#xff0c;今天小卷就来教大家怎么做这种图片 先看看图片效果 视频链接&#xff1a; 仿佛见到一位故人&#xff0c;…