图分类,图机器学习最新进展

news2024/11/23 11:06:09

图分类,图机器学习最新进展

1.Flat_Pooling在这里插入图片描述

TitleVenueTaskCodeDataset
DMLAP: Multi-level attention pooling for graph neural networks: Unifying graph representations with multiple localitiesNeural Networks 20221. Graph ClassificationNonesynthetic, OGB-molhiv, OGB-ppa, MCF-7 (TU dataset)
GraphTrans: Representing Long-Range Context for Graph Neural Networks with Global Attention 🌟NIPS 20211. Graph Classification1.PyTorchNCI1, NCI109, code2, molpcba
GMT: Accurate Learning of Graph Representations with Graph Multiset Pooling. 🌟ICLR 20211. Graph Classification 2. Graph Reconstruction 3. Graph Generation1.PyTorch 2.PyTorch-GeometricD&D, PROTEINS, MUTAG, IMDB-B, IMDB-M, COLLAB, OGB-MOLHIV, OGB-Tox21, OGB-ToxCast, OGB-BBBP, ZINC(Reconstruction), QM9(Generation)
QSGCNN: Learning Graph Convolutional Networks based on Quantum Vertex Information PropagationTKDE 20211. Graph ClassificationNoneMUTAG, PTC, NCI1, PROTEINS, D&D, COLLAB, IMDB-B, IMDB-M, RED-B
DropGNN: DropGNN: Random Dropouts Increase the Expressiveness of Graph Neural NetworksNIPS 20211. Graph Classification 2. Graph RegressionPyTorchMUTAG, PTC, PROTEINS, IMDB-B, IMDB-M QM9(Regression)
SSRead: Learnable Structural Semantic Readout for Graph ClassificationICDM 20211. Graph ClassificationPyTorchD&D, MUTAG, Mutagencity, NCI1,PROTEINS, IMDB-B, IMDB-M
FlowPool: Pooling Graph Representations with Wasserstein Gradient FlowsArXiv 20211. Graph ClassificationNoneBZR, COX2, PROTEINS
DKEPool: Distribution Knowledge Embedding for Graph PoolingTKDE 20221. Graph ClassificationPyTorchIMDB-B, IMDB-M, MUTAG, PTC, NCI1, PROTEINS, REDDIT-BINARY, OGB-MOLHIV, OGB-BBB
FusionPooling: Hybrid Low-order and Higher-order Graph Convolutional NetworksComputational Intelligence and Neuroscience 20201. Text Classification 2. node classificationNone20-Newsgroups // Cora, CiteSeer, PubMed
SOPool: Second-Order Pooling for Graph Neural NetworksTPAMI 20201. Graph ClassificationNoneMUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
StructSa: Structured self-attention architecture for graph-level representation learningPattern Recognition 20201. Graph ClassificationNoneMUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI
NAS: Graph Neural Network Architecture Search for Molecular Property PredictionICBD 20201. Graph RegressionNoneQM7, QM8, QM9, ESOL, FreeSolv, Lipophilicity
Neural Pooling for Graph Neural NetworksArXiv 20201. Graph ClassificationNoneMUTAG, PTC PROTEINS, NCI1, COLLAB, IMDB-B, IMDB-M, REDDIT-BINARY,REDDIT-MULTI-5K
GFN: Are Powerful Graph Neural Nets Necessary? A Dissection on Graph ClassificationArXiv 20191. Graph ClassificationPyTorchMUTAG, PROTEINS, D&D, NCI1, ENZYMES, IMDB-B, IMDB-M, RDT-B. REDDTIT-Multi-5K, REDDIT-Multi-12K, COLLAB
GIN: How Powerful are Graph Neural Networks?ICLR 20191. Graph ClassificationPyTorchMUTAG, PROTEINS, PTC, NCI1, IMDB-B, IMDB-M, RDT-B. RDT-Multi-5K, COLLAB
Semi-Supervised Graph Classification: A Hierarchical Graph PerspectiveWWW 20191. Graph ClassificationPyTorchTencent
DEMO-Net: Degree-specific Graph Neural Networks for Node and Graph ClassificationKDD 20191. Graph ClassificationTensorFlowMUTAG, PTC PROTEINS,ENZYMES
MSNAPool: Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph ProximityIJCAI 20191. Graph Classification 2. Graph similarity ranking 3. Graph visualizationTensorFlowPTC, IMDB-B, WEB, NCI109, REDDIT-Multi-12K
PiNet: Attention Pooling for Graph ClassificationNIPS-W 20191. Graph ClassificationCodeMUTAG, PTC, NCI1, NCI109, PROTEINS, Erdõs-Rényi graphs
DAGCN: Dual Attention Graph Convolutional NetworksIJCNN 20191. Graph ClassificationPyTorchNCI1, D&D, ENZYMES, NCI109, PROTEINS, PTC
DeepSet: Universal Readout for Graph Convolutional Neural NetworksIJCNN 20191. Graph ClassificationCodeMUTAG, PTC, NCI1, PROTEINS,D&D
SortPool: An End-to-End Deep Learning Architecture for Graph ClassificationAAAI 20181. Graph Classification1.PyTorch-Geometric, 2.Matlab, 3.PyTorch 4.SpektralMUTAG, PTC, NCI1 PROTEINS, D&D
Set2set: Order Matters: Sequence to Sequence for SetsICLR 2016-PyTorch-Geometric-
GatedPool: Gated Graph Sequence Neural NetworksICLR 2016-PyTorch-Geometric-
DCNN: Diffusion-Convolutional Neural NetworksNIPS 20161. Graph ClassificationTheanoNCI1, NCI109, MUTAG, PCI, ENZYMES

Hierarchical_Pooling - Node_Clustering_Pooling

TitleVenueTaskCodeDataset
Maximal Independent Vertex Set Applied to Graph PoolingCIKM 20221. Graph ClassificationNonePROTEINS, NCI1, D&D, ENZYMES
Higher-order Clustering and Pooling for Graph Neural NetworksCIKM 20221. Graph Classification 2. Node Clustering1.PyTorchPROTEINS, NCI1, D&D, MUTAGEN., Reddit-B, Cox2-MD, ER-MD, b-hard // Cora, PubMed, DBLP, Coauthor CS ,Amazon Photo, Amazon PC, Polblogs, Eu-email
Unsupervised Hierarchical Graph Pooling via Substructure-Sensitive Mutual Information MaximizationCIKM 20221. Graph ClassificationNoneMUTAG, PROTEINS, PTC, HIV, IMDB-B, IMDB-M
Structural Entropy Guided Graph Hierarchical PoolingICML 20221. Graph Classification 2. Node Classification 3. Graph Reconstruction1. PyTorchMUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M // Cora, Citeseer, Pubmed // synthetic datasets (grid and circle)
HGCN:Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal TransportAAAI 20211. Graph Classification1. PyTorchMUTAG, PROTEINS, D&D, NCI109,IMDB-B, IMDB-M
Hierarchical Graph Representation Learning with Local Capsule PoolingMMAsia 20211. Graph Classification 2. Graph Reconstruction1. PyTorchMUTAG, PROTEINS, D&D, PTC, NCI1,IMDB-B, IMDB-M //synthetic datasets (grid and circle)
HGCN:Hierarchical Graph Capsule NetworkAAAI 20211. Graph Classification1. PyTorchMUTAG, NCI1, PROTEINS, D&D, ENZYMES, PTC, NCI109,IMDB-B, IMDB-M, Reddit-BINARY
HAP: Hierarchical Adaptive Pooling by Capturing High-order Dependency for Graph Representation LearningTKDE 20211. Graph Classification 2. Graph Matching 3. Graph Similarity LearningNoneIMDB-B, IMDB-M, COLLAB, MUTAG, PROTEINS, PTC // synthetic datasets (graph matching) // AIDS, LINUX (graph similarity)
LCP: Hierarchical Graph Representation Learning with Local Capsule PoolingMMAsia1. Graph Classification 2. Graph ReconstructionNoneD&D, PROTEINS, IMDB-B, IMDB-M, NCI1, NIC109
MxPool: Multiplex Pooling for Hierarchical Graph Representation LearningArXiv 20211.Graph ClassificationNoneD&D, ENZYMES, PROTEINS, NCI109, COLLAB, RDT-MULTI
HIBPool: Structure-Aware Hierarchical Graph Pooling using Information BottleneckIJCNN 20211. Graph Classification1.PyTorchENZYMES, DD, PROTEINS, NCI1, NCI109,FRANKENSTEIN
MLC-GCN: Graph convolutional networks with multi-level coarsening for graph classificationKnowledge-Based Systems 20201.Graph ClassificationNoneD&D, ENZYMES, MUTAG, PROTEINS,IMDB-BINARY, IMDB-MULTI, REDDIT- BINARY, REDDIT-MULTI-5K
DGM: Deep Graph Mapper: Seeing Graphs through the Neural LensNIPS-W 20201. Graph Classification 2. Graph Visualisation1.PyTorchD&D, PROTEINS, COLLAB, REDDIT-B
MuchGNN: Multi-Channel Graph Neural NetworksIJCAI 20201. Graph ClassificationNonePTC, DD, PROTEINS, COLLAB, IMDB-BINARY, IMDB-MULTI, REDDIT-MULTI-12K
MinCutPool: Spectral Clustering with Graph Neural Networks for Graph PoolingICML 20201. Graph Classification 2. Graph Regression1.PyTorch-Geometric, 2.PyTorchD&D, PROTEINS, COLLAB, REDDIT-BINARY, Mutagenicity, QM9(regression)
HaarPool: Haar Graph PoolingICML 20201. Graph Classification 2. Graph Regression1.PyTorchMUTAG, PROTEINS, NCI1, NCI109, MUTAGEN, TRIANGLES, QM7(regression)
MemPool: Memory-Based Graph NetworksICLR 20201. Graph Classification 2. Graph Regression1.PyTorch-Geometric, 2.PyTorchD&D, PROTEINS, COLLAB, REDDIT-BINARY,ENZYMES ESOL(reg), Lipophilicity(reg)
StructPool: Structured Graph Pooling via Conditional Random FieldsICLR 20201.Graph Classification1. PyTorchENZYMES, PTC, MUTAG, PROTEINS, COLLAB, IMDB-B, IMDB-M
MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph Representation and LearningArXiv 20201.Graph Classification 2. Graph RegressionNoneD&D, PROTEINS, MUTAG, ENZYMES // QM7 (regression) MUTA-GENICITY
ProxPool: Graph Pooling with Node Proximity for Hierarchical Representation LearningArXiv 20201.Graph ClassificationNoneD&D, PROTEINS, NCI1, NCI109, MUTA-GENICITY
CliquePool: Clique pooling for graph classificationICLR-W 20191. Graph ClassificationNoneD&D PROTEINS, ENZYMES, COLLAB
NMF: A Non-Negative Factorization approach to node pooling in Graph Convolutional Neural NetworksAIIA 20191. Graph ClassificationNoneD&D, PROTEINS, NCI1, ENZYMES, COLLAB
GRAHIES: Multi-Scale Graph Representation Learning with Latent Hierarchical StructureCogMI 20191. Node ClassificationNoneCora, CiteSeer, PubMed
EigenPool: Graph Convolutional Networks with EigenPoolingKDD 20191. Graph Classification1.PyTorchD&D, PROTEINS, NCI1, NCI109, MUTAG,

参考链接:https://github.com/LiuChuang0059/graph-pooling-papers#flat_pooling
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9460814

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/875277.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Tomcat日志中文乱码

修改安装目录下的日志配置 D:\ProgramFiles\apache-tomcat-9.0.78\conf\logging.properties java.util.logging.ConsoleHandler.encoding GBK

感受RFID服装门店系统的魅力

嘿,亲爱的时尚追随者们!今天小编要给你们带来一股时尚新风潮,让你们感受一下什么叫做“RFID服装门店系统”,这个超酷的东西! 别着急,先别翻白眼,小编来解释一下RFID是什么玩意儿。它是射频识别…

Android使用Gradle kotlin dsl 优雅配置构建项目

目录 概述1.Gradle Kotlin-DSL配置1.1 在根目录下建立一个buildSrc目录,1.2.新建build.gradle.kts文件并添加Kotlin dsl相关配置 2.Gradle Kotlin DSL 的编写2.1 定义项目的版本号信息2.2.定义Dependencies管理项目中需要使用的库依赖2.3 定义APK的打包脚本构建APK的…

R-Meta分析与【文献计量分析、贝叶斯、机器学习等】多技术融合

Meta分析是针对某一科研问题,根据明确的搜索策略、选择筛选文献标准、采用严格的评价方法,对来源不同的研究成果进行收集、合并及定量统计分析的方法,最早出现于“循证医学”,现已广泛应用于农林生态,资源环境等方面。…

600份国家自然基金申报书--模板

600份国家自然基金申报书--模板 0、引言1、 目录2、网盘链接 ⚠申明: 未经许可,禁止以任何形式转载,若要引用,请标注链接地址。 全文共计3077字,阅读大概需要3分钟 🌈更多学习内容, 欢迎&#x…

增速骤降2703亿

号外:公众号「刘教链Pro」今日发表《如果牛市停止加仓》。公众号「刘教链内参」今日发表《内参:灰度负溢价继续收窄,微策略跑赢一切》。欢迎点击阅读。 * * * * * * 日前,中国人民银行网站公布了7月份的金融统计数据报告&#xf…

原生信息流广告特点,如何帮APP开发者增加变现收益?

简单来说:原生广告,就是把广告片和账号,一起用消耗推流的买量模式,一同投放出去。 用户看到的广告/内容,与原生视频没有差别——用户可以点头像关注、也可以查看账号历史信息。原生广告本质,是显得真实、原…

头条移动端项目Day03 —— 自媒体素材管理、自媒体文章管理、自媒体文章发布

❤ 作者主页:欢迎来到我的技术博客😎 ❀ 个人介绍:大家好,本人热衷于Java后端开发,欢迎来交流学习哦!( ̄▽ ̄)~* 🍊 如果文章对您有帮助,记得关注、点赞、收藏、…

JDK 17 营销初体验 —— 亚毫秒停顿 ZGC 落地实践 | 京东云技术团队

前言 自 2014 年发布以来, JDK 8 一直都是相当热门的 JDK 版本。其原因就是对底层数据结构、JVM 性能以及开发体验做了重大升级,得到了开发人员的认可。但距离 JDK 8 发布已经过去了 9 年,那么这 9 年的时间,JDK 做了哪些升级&am…

Java 8:Stream API 流式操作

💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! Java 8:Stream API Java 8 中的 Stream API 是一组用于对集合数据进行处理的新特性;提供一种以声明式风格对集合进行操作的方式,简…

pdf加水印怎么加?掌握这几种加水印方法就够了

pdf加水印怎么加?水印可以帮助保护你的文档免受未经授权的复制或滥用。通过在PDF文件上添加水印,可以在每页或指定位置显示作者、公司名称、版权信息或其他标识,以确保他人无法随意盗用你的作品。下面就给大家介绍几种添加水印的方法。 【迅捷…

Openlayers 实战 - 地图视野(View)- 图层 -(layer)- 资源(source)显示等级设置。

Openlayers 实战 - 地图视野(View)- 图层 -(layer)- 资源(source)显示等级设置。 问题原因核心代码完整代码:在线示例 在以往的项目维护中,出现一个问题,使用最新高清底图…

JS图表库LightningChart JS全新发布v4.2——新增多种雷达图表类型

LightningChartJS是Web上性能最高的图表库具有出色的执行性能 - 使用高数据速率同时监控数十个数据源。 GPU加速和WebGL渲染确保您的设备的图形处理器得到有效利用,从而实现高刷新率和流畅的动画。用于贸易,工程,航空航天,医药和其…

随机过程的2个例题探讨

(一)马氏过程和泊松过程、维纳过程的联系 泊松过程、维纳过程两者都是独立增量过程。独立增量过程是马氏过程的条件: 1. 随机过程是独立增量过程 2. X(0) 0 满足以上两个条件的随机过程都是马氏过程。 注意&#xff1…

C/C++test两步完成CMake项目静态分析

您可能一直在静态分析中使用CMake。但您是否尝试过将Parasoft C/Ctest与CMake一起使用吗?以下是如何使用C/Ctest在基于CMake的项目中运行静态分析的详细说明。 CMake是用于构建、测试和打包软件的最流行的工具之一。Parasoft C/Ctest通过简化构建管理过程&#xff…

Vue常用属性(计算属性和侦听器属性)

目录 计算属性computed 名称例子: 浏览器实现: 性和名输入: 只读输入: 读写输入: 侦听器属性watch 练习例子: 浏览器实现: 属性侦听: 对象侦听: 对象中的属性侦听&#xf…

基于STM32CUBEMX驱动TMOS模块STHS34PF80(2)----驱动STHS34PF80进行人体检测

基于STM32CUBEMX驱动TMOS模块STHS34PF80----2.驱动STHS34PF80进行人体检测 概述样品申请视频教程参考Demo引导温度测量滤波方式智能识别算法使用块数据更新(BDU)功能设置ODR速率状态寄存器main.c 概述 STHS34PF80 是一款非冷却、工厂校准的红外运动和存…

Java:异常处理:捕获异常,记录异常并响应合话的信息给用户;捕获异常,尝试重新修复

异常处理 1、埔获异常,记录异常并响应合话的信息给用户 public static void main(String[ ] args){ try {test1(); }catch (FileNotFoundException e) {system.out.println("您要找的文件不存在!! ");e.printstackTrace();//打印出这个异常对象的信息。记…

如何运用小程序技术闭环运营链路?

如何通过线上小程序获取用户线索,提高企业抗风险能力,建立有效的营销数字化系统一直是困扰每一个小程序开发者与运营者的问题。 当我们选择使用小程序设计自己的运营流程时,从「推广」到「转化」,再到最终的「留存」都是运营过程…

Grafana Loki

Loki是 Grafana Labs 团队最新的开源项目,是一个水平可扩展,高可用性,多租户的日志聚合系统。它的设计非常经济高效且易于操作,因为它不会为日志内容编制索引,而是为每个日志流编制一组标签。项目受 Prometheus 启发&a…