使用 prometheus client SDK 暴露指标

news2024/11/27 8:59:50

目录

  • 1. 使用 prometheus client SDK 暴露指标
    • 1.1. How Go exposition works
    • 1.2. Adding your own metrics
    • 1.3. Other Go client features
  • 2. Golang Application monitoring using Prometheus
    • 2.1. Metrics and Labels
    • 2.2. Metrics Types
      • 2.2.1. Counters:
      • 2.2.2. Gauges:
      • 2.2.3. Histograms:
      • 2.2.4. Summaries
    • 2.3. Setting Up Our Go Project
    • 2.4. Adding metrics to the application
    • 2.5. Dockerizing the application
    • 2.6. Visualizing metrics using Grafana

1. 使用 prometheus client SDK 暴露指标

1.1. How Go exposition works

To expose Prometheus metrics in a Go application, you need to provide a /metrics HTTP endpoint. You can use the prometheus/promhttp library’s HTTP Handler as the handler function.

This minimal application, for example, would expose the default metrics for Go applications via http://localhost:2112/metrics:

package main

import (
        "net/http"

        "github.com/prometheus/client_golang/prometheus/promhttp"
)

func main() {
        http.Handle("/metrics", promhttp.Handler())
        http.ListenAndServe(":2112", nil)
}

To start the application:

go run main.go

To access the metrics:

curl http://localhost:2112/metrics

1.2. Adding your own metrics

The application above exposes only the default Go metrics. You can also register your own custom application-specific metrics. This example application exposes a myapp_processed_ops_total counter that counts the number of operations that have been processed thus far. Every 2 seconds, the counter is incremented by one.

package main

import (
        "net/http"
        "time"

        "github.com/prometheus/client_golang/prometheus"
        "github.com/prometheus/client_golang/prometheus/promauto"
        "github.com/prometheus/client_golang/prometheus/promhttp"
)

func recordMetrics() {
        go func() {
                for {
                        opsProcessed.Inc()
                        time.Sleep(2 * time.Second)
                }
        }()
}

var (
        opsProcessed = promauto.NewCounter(prometheus.CounterOpts{
                Name: "myapp_processed_ops_total",
                Help: "The total number of processed events",
        })
)

func main() {
        recordMetrics()

        http.Handle("/metrics", promhttp.Handler())
        http.ListenAndServe(":2112", nil)
}

In the metrics output, you’ll see the help text, type information, and current value of the myapp_processed_ops_total counter:

# HELP myapp_processed_ops_total The total number of processed events
# TYPE myapp_processed_ops_total counter
myapp_processed_ops_total 5

You can configure a locally running Prometheus instance to scrape metrics from the application. Here’s an example prometheus.yml configuration:

scrape_configs:
- job_name: myapp
  scrape_interval: 10s
  static_configs:
  - targets:
    - localhost:2112

1.3. Other Go client features

In this guide we covered just a small handful of features available in the Prometheus Go client libraries. You can also expose other metrics types, such as gauges and histograms, non-global registries, functions for pushing metrics to Prometheus PushGateways, bridging Prometheus and Graphite, and more.

2. Golang Application monitoring using Prometheus

In this article, you will learn the basics of Prometheus including what metrics are, the different types of metrics and when they are used. After that, you will expose metrics of a Golang application and visualize them using Grafana.

To ensure our applications’ quality, some kind of quality monitoring and quality checks need to be executed. These quality checks often compare a given metric captured from the application e.g. throughput or error rate, with some defined value e.g. error rate < 0,1%.

Prometheus is an open source monitoring and alerting tool that helps us to collect and expose these metrics from our application in an easy and reliable way.

In this article, you will learn the basics of Prometheus including what metrics are, the different types of metrics and when they are used. After that, you will expose metrics of a Golang application and visualize them using Grafana.

2.1. Metrics and Labels

Simply put, metrics measure a particular value e.g. the response time of your application over time. Once the metrics are exposed from the application using some kind of instrumented system Prometheus stores them in a time-series database and makes them promptly available using queries.

# Total number of HTTP request
http_requests_total

# Response status of HTTP request
response_status

# Duration of HTTP requests in seconds
http_response_time_seconds

If you have more than one service for a specific metric you can add a label to specify which service the metric is from. For example, you could add a service label to the http_requests_total metric to differentiate between each service’s request. Another useful metric would be the URL of the different response statuses:

# Total number of HTTP request
http_requests_total{service="builder"}

# Response status of HTTP request
response_status{path="/"}
response_status{path="/articles"}

Augmenting metrics with the correct labels will make it easy to query them, especially when you have many different services.

2.2. Metrics Types

Prometheus provides four different metric types each with their advantages and disadvantages that make them useful for different use-cases. In this part of the article we are going to take a close look at all four of them.

2.2.1. Counters:

Counters are a simple metric type that can only be incremented or be reset to zero on restart. It is often used to count primitive data like the total number of requests to a services or number of tasks completed. Most counters are therefore named using the _total suffix e.g. http_requests_total.

# Total number of HTTP request
http_requests_total

# Total number of completed jobs
jobs_completed_total

The absolute value of these counters is often irrelevant and does not give you much information about the applications state. The real information can be gathered by their evolution over time which can be obtained using the rate() function.

2.2.2. Gauges:

Gauges also represent a single numerical value but different to counters the value can go up as well as down. Therefore gauges are often used for measured values like temperature, humidy or current memory usage.

Unlike with counters the current value of a gauge is meaningful and can be directly used in graphs and tests.

2.2.3. Histograms:

Histograms are used to measure the frequency of value observations that fall into specific predefined buckets. This means that they will provide information about the distribution of a metric like response time and signal outliers.

By default Prometheus provides the following buckets: .005, .01, .025, .05, .075, .1, .25, .5, .75, 1, 2.5, 5, 7.5, 10. These buckets are not suitable for every measurement and can therefore easily be changed.

2.2.4. Summaries

Summaries are very similar to Histograms because they both expose the distribution of a given data set. The one major difference is that a Histogram estimate quantiles on the Prometheus server while Summaries are calculated on the client side.

Summaries are more accurate for some pre-defined quantiles but can be a lot more resource expensive because of the client-side calculations. That is why it is recommended to use Histograms for most use-cases.

2.3. Setting Up Our Go Project

Before we can use Prometheus, we first need to build a simple application to expose some basic metrics. For this, we will build a simple Golang HTTP server that serves a static HTML and CSS file when accessing localhost:9000.

Let’s start by creating the files needed for the project. This can be done using the following commands:

mkdir static
touch main.go Dockerfile static/index.html

The HTTP server is written using Mux and will serve the static directory containing the HTML and CSS file you created above.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"log"
	"net/http"
)


func main() {
	router := mux.NewRouter()

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

The HTML file will only contain an H1 tag with “Hello World!” as its content and import a CSS file.

<html>
<head>
    <title>Hello server</title>
    <link rel="stylesheet" href="style.css"/>
</head>
<body>
<div>
  <h1>Hello World!</h1>
</div>
</body>
</html>

2.4. Adding metrics to the application

Now that the application’s basic functionality is finished, we can start exposing metrics that Prometheus will later scrape. The official Golang Prometheus library automatically exposes some build-in metrics and simply needs to be imported and added to the HTTP server.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"log"
	"net/http"
    "github.com/prometheus/client_golang/prometheus/promhttp"
)


func main() {
	router := mux.NewRouter()

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))
    
   	// Prometheus endpoint
	router.Path("/prometheus").Handler(promhttp.Handler())

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

Now that we have added the Prometheus library and exposed the handler on /prometheus we can see the metrics by starting the application and navigating to localhost:9000/prometheus. The output should look similar to this:

# HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
# TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 2.07e-05
go_gc_duration_seconds{quantile="0.25"} 7.89e-05
go_gc_duration_seconds{quantile="0.5"} 0.000137
go_gc_duration_seconds{quantile="0.75"} 0.0001781
go_gc_duration_seconds{quantile="1"} 0.0002197
go_gc_duration_seconds_sum 0.0071928
go_gc_duration_seconds_count 56
# HELP go_goroutines Number of goroutines that currently exist.
# TYPE go_goroutines gauge
go_goroutines 8
# HELP go_info Information about the Go environment.
# TYPE go_info gauge
go_info{version="go1.15"} 1
# HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.
# TYPE go_memstats_alloc_bytes gauge
go_memstats_alloc_bytes 4.266136e+06
# HELP go_memstats_alloc_bytes_total Total number of bytes allocated, even if freed.
# TYPE go_memstats_alloc_bytes_total counter
go_memstats_alloc_bytes_total 1.17390144e+08
# HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table.
# TYPE go_memstats_buck_hash_sys_bytes gauge
go_memstats_buck_hash_sys_bytes 1.456289e+06
# HELP go_memstats_frees_total Total number of frees.
# TYPE go_memstats_frees_total counter
go_memstats_frees_total 435596
# HELP go_memstats_gc_cpu_fraction The fraction of this program's available CPU time used by the GC since the program started.
# TYPE go_memstats_gc_cpu_fraction gauge
go_memstats_gc_cpu_fraction 1.5705717722141224e-06
# HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system metadata.
# TYPE go_memstats_gc_sys_bytes gauge
go_memstats_gc_sys_bytes 4.903096e+06
# HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and still in use.
# TYPE go_memstats_heap_alloc_bytes gauge
go_memstats_heap_alloc_bytes 4.266136e+06
# HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used.
# TYPE go_memstats_heap_idle_bytes gauge
go_memstats_heap_idle_bytes 6.1046784e+07
# HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use.
# TYPE go_memstats_heap_inuse_bytes gauge
go_memstats_heap_inuse_bytes 5.210112e+06
# HELP go_memstats_heap_objects Number of allocated objects.
# TYPE go_memstats_heap_objects gauge
go_memstats_heap_objects 17572
# HELP go_memstats_heap_released_bytes Number of heap bytes released to OS.
# TYPE go_memstats_heap_released_bytes gauge
go_memstats_heap_released_bytes 6.0588032e+07
# HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system.
# TYPE go_memstats_heap_sys_bytes gauge
go_memstats_heap_sys_bytes 6.6256896e+07
# HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage collection.
# TYPE go_memstats_last_gc_time_seconds gauge
go_memstats_last_gc_time_seconds 1.61550102568985e+09
# HELP go_memstats_lookups_total Total number of pointer lookups.
# TYPE go_memstats_lookups_total counter
go_memstats_lookups_total 0
# HELP go_memstats_mallocs_total Total number of mallocs.
# TYPE go_memstats_mallocs_total counter
go_memstats_mallocs_total 453168
# HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures.
# TYPE go_memstats_mcache_inuse_bytes gauge
go_memstats_mcache_inuse_bytes 27776
# HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system.
# TYPE go_memstats_mcache_sys_bytes gauge
go_memstats_mcache_sys_bytes 32768
# HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures.
# TYPE go_memstats_mspan_inuse_bytes gauge
go_memstats_mspan_inuse_bytes 141576
# HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained from system.
# TYPE go_memstats_mspan_sys_bytes gauge
go_memstats_mspan_sys_bytes 147456
# HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place.
# TYPE go_memstats_next_gc_bytes gauge
go_memstats_next_gc_bytes 6.42088e+06
# HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations.
# TYPE go_memstats_other_sys_bytes gauge
go_memstats_other_sys_bytes 1.931943e+06
# HELP go_memstats_stack_inuse_bytes Number of bytes in use by the stack allocator.
# TYPE go_memstats_stack_inuse_bytes gauge
go_memstats_stack_inuse_bytes 851968
# HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator.
# TYPE go_memstats_stack_sys_bytes gauge
go_memstats_stack_sys_bytes 851968
# HELP go_memstats_sys_bytes Number of bytes obtained from system.
# TYPE go_memstats_sys_bytes gauge
go_memstats_sys_bytes 7.5580416e+07
# HELP go_threads Number of OS threads created.
# TYPE go_threads gauge
go_threads 13
# HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.
# TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 1.83
# HELP process_max_fds Maximum number of open file descriptors.
# TYPE process_max_fds gauge
process_max_fds 1.048576e+06
# HELP process_open_fds Number of open file descriptors.
# TYPE process_open_fds gauge
process_open_fds 10
# HELP process_resident_memory_bytes Resident memory size in bytes.
# TYPE process_resident_memory_bytes gauge
process_resident_memory_bytes 2.8770304e+07
# HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
# TYPE process_start_time_seconds gauge
process_start_time_seconds 1.61549436213e+09
# HELP process_virtual_memory_bytes Virtual memory size in bytes.
# TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.564209152e+09
# HELP process_virtual_memory_max_bytes Maximum amount of virtual memory available in bytes.
# TYPE process_virtual_memory_max_bytes gauge
process_virtual_memory_max_bytes -1
# HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
# TYPE promhttp_metric_handler_requests_in_flight gauge
promhttp_metric_handler_requests_in_flight 1
# HELP promhttp_metric_handler_requests_total Total number of scrapes by HTTP status code.
# TYPE promhttp_metric_handler_requests_total counter
promhttp_metric_handler_requests_total{code="200"} 447
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

These metrics are great, but they are not very useful most of the time. Instead of low-level metrics, we now want to expose custom metrics that will expose our application’s internal information that we can later visualize or use in tests or health checks.

Let’s start with a rather basic metric: the total number of HTTP requests made to the server represented in a counter.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"github.com/prometheus/client_golang/prometheus"
	"github.com/prometheus/client_golang/prometheus/promauto"
	"github.com/prometheus/client_golang/prometheus/promhttp"
	"log"
	"net/http"
	"strconv"
)

var totalRequests = prometheus.NewCounterVec(
	prometheus.CounterOpts{
		Name: "http_requests_total",
		Help: "Number of get requests.",
	},
	[]string{"path"},
)

func prometheusMiddleware(next http.Handler) http.Handler {
	return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
		rw := NewResponseWriter(w)
		next.ServeHTTP(rw, r)

		totalRequests.WithLabelValues(path).Inc()
	})
}

func init() {
	prometheus.Register(totalRequests)
}

func main() {
	router := mux.NewRouter()
	router.Use(prometheusMiddleware)

	// Prometheus endpoint
	router.Path("/prometheus").Handler(promhttp.Handler())

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

Let’s break the code changes down for better understanding:

  • The metric needs to be created using the prometheus package. The NewCounterVec() method is used to create a new counter metric.
  • To expose the created metric in the HTTP handler we must register the metric to Prometheus using the register() method.
  • Lastly, we need to implement the functionality of the metric in our code. Here we created and registered a new HTTP middleware that runs every time the server receives an HTTP request and increases the metric counter using the Inc() method.

The following code block contains two more metrics with different metric types: response_status and response_time perspectively.

package main

import (
	"fmt"
	"github.com/gorilla/mux"
	"github.com/prometheus/client_golang/prometheus"
	"github.com/prometheus/client_golang/prometheus/promauto"
	"github.com/prometheus/client_golang/prometheus/promhttp"
	"log"
	"net/http"
	"strconv"
)

type responseWriter struct {
	http.ResponseWriter
	statusCode int
}

func NewResponseWriter(w http.ResponseWriter) *responseWriter {
	return &responseWriter{w, http.StatusOK}
}

func (rw *responseWriter) WriteHeader(code int) {
	rw.statusCode = code
	rw.ResponseWriter.WriteHeader(code)
}

var totalRequests = prometheus.NewCounterVec(
	prometheus.CounterOpts{
		Name: "http_requests_total",
		Help: "Number of get requests.",
	},
	[]string{"path"},
)

var responseStatus = prometheus.NewCounterVec(
	prometheus.CounterOpts{
		Name: "response_status",
		Help: "Status of HTTP response",
	},
	[]string{"status"},
)

var httpDuration = promauto.NewHistogramVec(prometheus.HistogramOpts{
	Name: "http_response_time_seconds",
	Help: "Duration of HTTP requests.",
}, []string{"path"})

func prometheusMiddleware(next http.Handler) http.Handler {
	return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
		route := mux.CurrentRoute(r)
		path, _ := route.GetPathTemplate()

		timer := prometheus.NewTimer(httpDuration.WithLabelValues(path))
		rw := NewResponseWriter(w)
		next.ServeHTTP(rw, r)

		statusCode := rw.statusCode

		responseStatus.WithLabelValues(strconv.Itoa(statusCode)).Inc()
		totalRequests.WithLabelValues(path).Inc()

		timer.ObserveDuration()
	})
}

func init() {
	prometheus.Register(totalRequests)
	prometheus.Register(responseStatus)
	prometheus.Register(httpDuration)
}

func main() {
	router := mux.NewRouter()
	router.Use(prometheusMiddleware)

	// Prometheus endpoint
	router.Path("/prometheus").Handler(promhttp.Handler())

	// Serving static files
	router.PathPrefix("/").Handler(http.FileServer(http.Dir("./static/")))

	fmt.Println("Serving requests on port 9000")
	err := http.ListenAndServe(":9000", router)
	log.Fatal(err)
}

2.5. Dockerizing the application

Now that the metrics are implemented in the application we can Dockerize the application to make running it with Prometheus easier.

FROM golang:1.15.0

# Set the Current Working Directory inside the container
WORKDIR /app

RUN export GO111MODULE=on

# Copy go mod and sum files
COPY go.mod go.sum ./

# Download all dependencies. Dependencies will be cached if the go.mod and go.sum files are not changed
RUN go mod download

COPY . .

# Build the application
RUN go build -o main .

# Expose port 9000 to the outside world
EXPOSE 9000

# Command to run the executable
CMD ["./main"]

The Dockerfile will download the dependencies, copy all files and build the application. After completing the Dockerfile, we can put the container and Prometheus into a Docker-Compose file.

version: '3.1'

services:
  golang:
    build:
      context: ./
      dockerfile: Dockerfile
    container_name: golang
    restart: always
    ports:
      - '9000:9000'
  prometheus:
    image: prom/prometheus:v2.24.0
    volumes:
      - ./prometheus/:/etc/prometheus/
      - prometheus_data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/usr/share/prometheus/console_libraries'
      - '--web.console.templates=/usr/share/prometheus/consoles'
    ports:
      - 9090:9090
    restart: always

volumes:
  prometheus_data:

The only thing that we need to do now before starting the applications is configuring the Prometheus endpoint. For that, we are going to create a configuration file:

mkdir prometheus
touch prometheus/prometheus.yml

Here we define the URL of the page that Prometheus should scrape the data from, which equals to ContainerIP:Port/prometheus for our application.

global:
  scrape_interval:     15s
  evaluation_interval: 15s

scrape_configs:
  - job_name: prometheus
    static_configs:
      - targets: ['localhost:9090']
  - job_name: golang 
    metrics_path: /prometheus
    static_configs:
      - targets:
        - golang:9000

After adding the configuration we can start the application using docker-compose:

docker-compose up -d

Now we can access Prometheus by visiting localhost:9090 in our browser.

1.webp

2.6. Visualizing metrics using Grafana

Now that Prometheus successfully collects the metrics, you’ll continue by visualizing the data using Grafana. For that, you’ll need to first start it by adding a Grafana container to your docker-compose file.

version: '3.1'

services:
  grafana:
    image: grafana/grafana:latest
    container_name: grafana
    ports:
      - "3000:3000"
    volumes:
      - grafana-storage:/var/lib/grafana
  golang:
    build:
      context: ./
      dockerfile: Dockerfile
    container_name: golang
    restart: always
    ports:
      - '9000:9000'
  prometheus:
    image: prom/prometheus:v2.24.0
    volumes:
      - ./prometheus/:/etc/prometheus/
      - prometheus_data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/usr/share/prometheus/console_libraries'
      - '--web.console.templates=/usr/share/prometheus/consoles'
    ports:
      - 9090:9090
    restart: always

volumes:
  grafana-storage:
  prometheus_data:

After adding the Grafana container and a volume that will save the Grafana configurations and data you can restart docker-compose.

docker-compose up -d

Now that Grafana is started you can access it by visiting http://localhost:3000 in your browser. It will ask you to enter user credentials which defaults are admin as a username and password.

2.webp

After logging in, you can create a new data source by navigating to Configuration>Data Source and clicking “Add data source”. After that, select Prometheus and then fill in the necessary information.

3.webp

Once the data source has been successfully added, you can continue by creating a new dashboard to visualize your metrics.

4.webp

The dashboard consists of panels that let you visualize metrics, so click “Add panel” to start.

5.webp

Now you can select a metric by specifying it in the metric field: e.g. http_requests_total.

6.webp

Your dashboard might not display as much data as mine since you have not accessed the application that often. The best way to get more data for testing is using a load testing tool.

I enjoy using the hey load testing tool, an open-source CLI application for load generation, but you can also use other tools. Once you downloaded hey you can generate traffic using the following command.

hey -z 5m -q 5 -m GET -H "Accept: text/html" http://127.0.0.1:9000

You can now experiment with the dashboard by adding other panels with metrics and customize it to your liking. If you want an example dashboard that visualizes all the metrics we have implemented, you can download it from Github and then import it.

7.webp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/861675.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【ECharts】树图

将3级改成4级 demo上是3层&#xff0c;如何实现4层。 initialTreeDepth: 4

【hello C++】特殊类设计

目录 一、设计一个类&#xff0c;不能被拷贝 二、设计一个类&#xff0c;只能在堆上创建对象 三、设计一个类&#xff0c;只能在栈上创建对象 四、请设计一个类&#xff0c;不能被继承 五、请设计一个类&#xff0c;只能创建一个对象(单例模式) C&#x1f337; 一、设计一个类&…

zynq复位管脚的方式

问&#xff1a;实际应用中&#xff0c;是不是PS_SRST_B必须&#xff0c;但是POR不是必须&#xff1f; 答&#xff1a;POR是必须有的&#xff0c;不然只能掉电复位&#xff0c;POR都是画上的。POR是整个芯片最高级复位&#xff0c;就是整个芯片都会复位。PS支持外部上电复位信号…

数据库新闻速递 -- POSTGRESQL 正在蚕食数据库市场 (翻译)

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请加 liuaustin3微信号 &#xff0c;在新加的朋友会分到3群&#xff…

什么是DNS服务器的层次化和分布式?

DNS (Domain Name System) 的结构是层次化的&#xff0c;意味着它是由多个级别的服务器组成&#xff0c;每个级别负责不同的部分。以下是 DNS 结构的层次&#xff1a; 根域服务器&#xff08;Root Servers&#xff09;&#xff1a; 这是 DNS 层次结构的最高级别。全球有13组根域…

开发命名规范

1项目命名规范 1、工程项目名&#xff0c;尽量想一些有意义、有传播价值的名称&#xff1b;比如星球、游戏、名人、名地名等&#xff1b;取名就跟给孩子取名一样&#xff0c;独特、有价值、有意义、好传播 2、所有的类都必须添加创建者和创建日期 3、所有代码&#xff1a;包括…

vteamled透明屏,在商业领域中的显示效果怎么样?高清、亮度

vteamled透明屏是一种新型的显示屏技术&#xff0c;它采用透明材料制成&#xff0c;可以实现透明显示效果。vteamled透明屏具有以下特点&#xff1a; 首先&#xff0c;vteamled透明屏具有高透明度。 它采用高透明材料制成&#xff0c;可以达到80%以上的透明度&#xff0c;使得…

Laravel 框架数据库配置构造器的查询.分块.聚合 ⑤

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; THINK PHP &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f44…

激活函数总结(四):Hard系列激活函数补充(HardSigmoid、HardTanh、Hardswish)

激活函数总结&#xff08;四&#xff09;&#xff1a;Hard系列激活函数补充 1 引言2 激活函数2.1 HardSigmoid激活函数2.2 HardTanh激活函数2.3 Hardswish激活函数 3. 总结 1 引言 在前面的文章中已经介绍了过去大家较为常见的激活函数 (Sigmoid、Tanh、ReLU、Leaky ReLU、PRe…

ruoyi-cloud微服务新建子模块

ruoyi-cloud微服务新建子模块 1、复制system模块 直接复制 modules下面已有的system模块&#xff0c;改名为 test 2、在modules下的 pom.xml文件中添加子模块 3、进入 test模块修改 pom.xml 把原有的system 修改成test 4、修改对应的包名、目录名和启动应用程序为test 5、修…

zustand:基于 Flux 模型实现的小型、快速和可扩展的状态管理

目录 ReactStep 1&#xff1a;安装Step 2&#xff1a;Store 初始化Step3&#xff1a;Store 绑定组件&#xff0c;就完成了!效果图 VueStep 1: 安装Step 2: Store 初始化Step 3: Store 绑定组件&#xff0c;就完成了!效果图 微前端为什么你需要 zustand-pub &#xff1f;安装ste…

使用基于jvm-sandbox的对三层嵌套类型的改造

使用基于jvm-sandbox的对三层嵌套类型的改造 问题背景 先简单介绍下基于jvm-sandbox的imock工具&#xff0c;是Java方法级别的mock&#xff0c;操作就是监听指定方法&#xff0c;返回指定的mock内容。 jvm-sandbox 利用字节码操作和自定义类加载器的技术&#xff0c;将原始方法…

【RabbitMQ与SpringBoot集成测试收发消息】

【RabbitMQ与SpringBoot集成测试收发消息】 一、环境说明二、实验步骤三、小结 一、环境说明 安装环境&#xff1a;虚拟机VMWare Centos7.6 Maven3.6.3 JDK1.8RabbitMQ版本&#xff1a;rabbitmq-server-3.8.8-1.el7.noarch.rpm编程工具Idea 运行JDK为17 二、实验步骤 在Rab…

无货源多功能跨境商城智能搭建--软件制作+程序开发

随着全球电子商务的快速发展&#xff0c;跨境贸易已经成为一种新的商业趋势。在这个背景下&#xff0c;建立一个多功能跨境人工智能商城数据处理平台&#xff0c;不仅可以提高跨境电商的运营效率&#xff0c;还可以增强用户的购物体验&#xff0c;进一步推动跨境贸易的发展。本…

LinuxC编程——进程

目录 一、概念1.1 程序1.2 进程 二、特点⭐⭐⭐三、进程段四、进程分类五、进程状态六、进程状态转换图七、函数接口1. 创建子进程2. 回收进程资源3. 退出进程4. 获取进程号 八、守护进程 一、概念 进程和程序是密不可分的两组概念&#xff0c;相对比&#xff0c;便于理解。 1.…

春秋云镜 CVE-2022-21661

春秋云镜 CVE-2022-21661 wordpress < 5.8.3 存在sql注入漏洞 靶标介绍 2022年1月6日&#xff0c;wordpress发布了5.8.3版本&#xff0c;修复了一处核心代码WP_Query的sql注入漏洞。WP_Query是wordpress定义的一个类&#xff0c;允许开发者编写自定义查询和使用不同的参数…

安装Ubuntu,创建分区时无EFI系统分区选项的解决方法

电脑型号&#xff1a;联想小新Air2021 操作系统&#xff1a;windows10 硬盘&#xff1a;一块512G固态 如题&#xff0c;安装Ubuntu&#xff0c;在创建分区时&#xff0c;“用于”栏 没有“EFI系统分区”选项&#xff0c;导致在重启电脑后&#xff0c;发现直接进了Windows系统…

STM32芯片的内部架构介绍

STM32芯片由内核和片上外设两部分组成。STM32F103采用Cortex-M3内核&#xff0c;该内核由ARM公司设计。芯片生产厂商ST则负责在内核之外设计部件并生产整个芯片。这些内核之外的部件被称为核外外设或片上外设&#xff0c;如GPIO、USART&#xff08;串口&#xff09;、I2C、SPI等…

Cookie和Session详解及区别

目录 1&#xff0c;会话跟踪技术的概述 2&#xff0c;Cookie 2.1 Cookie的基本使用 1.概念 2.Cookie的工作流程 3.Cookie的基本使用 3.1 发送Cookie 3.2 获取Cookie 3.3设置Cookie存活时间 3&#xff0c;Session 3.1 Session的基本使用 3.2Session销毁 4.cookie和s…

plt绘制实测值与预测值的散点图

# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import MultipleLocator""" 输出观测值和模型预测值之间的拟合曲线,即拟合模型 决定系数R2&#xff0c;有拟合曲线公式&#xff0c;有1:1线 ""&…