机器学习笔记之优化算法(十一)梯度下降法:凸函数VS强凸函数

news2024/11/14 23:28:25

机器学习笔记之优化算法——梯度下降法:凸函数VS强凸函数

  • 引言
    • 凸函数:
      • 凸函数的定义与判定条件
      • 凸函数的一阶条件
      • 凸函数的梯度单调性
      • 凸函数的二阶条件
    • 强凸函数
      • 强凸函数的定义
      • 强凸函数的判定条件
      • 强凸函数的一阶条件
      • 强凸函数的梯度单调性
      • 强突函数的二阶条件

引言

本节将介绍凸函数、强凸函数以及它们之间的联系(补梯度下降法:总体介绍中的坑)。

凸函数:

凸函数的定义与判定条件

关于凸函数的定义表示如下: f ( ⋅ ) f(\cdot) f()为定义在空间 I \mathcal I I上的函数,若对 I \mathcal I I上的任意两点 x 1 , x 2 x_1,x_2 x1,x2任意实数 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1)总有
通常将空间 I \mathcal I I设置为实数域与空间 ⇒ R n \Rightarrow \mathbb R^n Rn
f [ λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 ] ≤ λ ⋅ f ( x 2 ) + ( 1 − λ ) ⋅ f ( x 1 ) f[\lambda \cdot x_2 + (1 - \lambda) \cdot x_1] \leq \lambda \cdot f(x_2) + (1 - \lambda) \cdot f(x_1) f[λx2+(1λ)x1]λf(x2)+(1λ)f(x1)
则称:函数 f ( ⋅ ) f(\cdot) f() I \mathcal I I上的凸函数。对应示例图像表示如下:
将其转化: λ ⋅ x 2 + ( 1 − λ ) ⋅ x 1 = x 1 + λ ⋅ ( x 2 − x 1 ) \lambda \cdot x_2 + (1 - \lambda)\cdot x_1 = x_1 + \lambda \cdot (x_2 - x_1) λx2+(1λ)x1=x1+λ(x2x1),那么 λ ( x 2 − x 1 ) \lambda(x_2 - x_1) λ(x2x1)可看作增量,而 λ \lambda λ可看作控制增量的参数。
凸函数定义示例
凸函数的一种判定条件:构造一个函数 G ( t ) \mathcal G(t) G(t),满足:
G ( t ) ≜ f ( x + v ⋅ t ) ∀ x , v ∈ R n , t ∈ R \mathcal G(t) \triangleq f(x + v \cdot t) \quad \forall x,v \in \mathbb R^n,t \in \mathbb R G(t)f(x+vt)x,vRn,tR
则有推论: f ( ⋅ ) f(\cdot) f()是凸函数 ⇔ G ( t ) \Leftrightarrow \mathcal G(t) G(t)是凸函数。在一般情况下,我们面对的权重空间是一个高维空间,而在高维空间中的目标函数 f ( ⋅ ) f(\cdot) f()也通常是一个高维函数。假设:权重空间是一个 2 2 2维空间,对应的目标函数 f ( ⋅ ) f(\cdot) f()也是一个 2 2 2维函数
即:输入变量的维度是 2 2 2维,而目标函数的输出结果是 1 1 1维标量。
f ( ⋅ ) : R 2 ↦ R f(\cdot):\mathbb R^2 \mapsto \mathbb R f():R2R
那么如何验证 f ( ⋅ ) f(\cdot) f()描述的图像在高维空间中的曲面是否为凸的 ? ? ?在介绍方向导数中提到:关于某一点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)关于函数 f ( ⋅ ) f(\cdot) f()在方向 l ⃗ \vec l l 方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)表示为下图中在 l ⃗ \vec l l 方向上过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)做一个垂直于 X O Y \mathcal X\mathcal O\mathcal Y XOY的平面,平面与 f ( ⋅ ) f(\cdot) f()相交的图像在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的斜率结果

  • 其中黄色菱形部分表示垂直于 X O Y \mathcal X\mathcal O\mathcal Y XOY平面在 l ⃗ \vec l l 方向上并过 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)黄色点的平面;红色点则表示 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)在函数 f ( ⋅ ) f(\cdot) f()上的结果;而黑色实线则表示过映射点与函数图像相切的直线,其斜率即方向导数 ∂ Z ∂ l ⃗ ∣ ( x 0 , y 0 ) \begin{aligned}\frac{\partial \mathcal Z}{\partial \vec l}|_{(x_0,y_0)}\end{aligned} l Z(x0,y0)

方向导数定义——示例
但这里我们并不关注方向导数,而是关注平面与函数图像之间相交所产生的截线的形状。可以观察上述图像对应的俯视图结果:
无论是上图还是俯视图,都没有对 f ( x , y ) f(x,y) f(x,y)进行完全表示,这仅仅是其中一部分图像。
俯视图效果
从俯视图角度可以看到:黄色截面简化成了一条直线。这实际上可看做上述判定条件中函数 x + v ⋅ t x+v \cdot t x+vt的某一种结果。而对应的 f ( x + v ⋅ t ) f(x + v \cdot t) f(x+vt)则表达:截面与函数图像之间相交产生的截线

如果从向量的角度认识,以下面红色直线为例:
判定条件2示例
其中 x , v x,v x,v是任意 R n \mathbb R^n Rn的向量,从而 x + v ⋅ t x+v \cdot t x+vt可表示为该图黑色虚线的结果。由于 t ∈ R t \in \mathbb R tR,如果我们将所有的 t t t全部取到,那么最终构成 x + v ⋅ t x + v \cdot t x+vt构成向量的集合就是红色直线的结果。

  • 关于向量 v v v,我们通常将其视作单位向量。因为即便不是单位向量,在转化为单位向量过程中得到的标量系数 k k k也可以与 t t t进行合并: t ∈ R ⇒ k ⋅ t ∈ R t \in\mathbb R \Rightarrow k \cdot t \in \mathbb R tRktR
  • 如果将 v v v看作单位向量 e ⃗ ( cos ⁡ α , cos ⁡ β ) \vec e(\cos \alpha,\cos\beta) e (cosα,cosβ),那么过点 P ( x 0 , y 0 ) \mathcal P(x_0,y_0) P(x0,y0),并且方向与 e ⃗ \vec e e 平行的直线参数方程可表示为
    Y = ( x 0 , y 0 ) + t ⋅ e ⃗ = ( x 0 , y 0 ) + t ⋅ ( cos ⁡ α , cos ⁡ β ) \mathcal Y = (x_0,y_0) + t \cdot \vec e = (x_0,y_0) + t \cdot (\cos\alpha,\cos\beta) Y=(x0,y0)+te =(x0,y0)+t(cosα,cosβ)

因此,关于该判定条件的另一种表达有:如果 x + v ⋅ t x + v \cdot t x+vt在该权重空间中描述的任意一个截面,其与函数 f ( ⋅ ) f(\cdot) f()相交产生的任意一条截线对应的函数均是凸函数,那么函数 f ( ⋅ ) f(\cdot) f()也是一个凸函数,反之同理
这是一个充分必要条件

凸函数的一阶条件

在函数 f ( ⋅ ) f(\cdot) f()可微的条件下,有:
相比于上述的定义与判定条件,并没有要求函数 f ( ⋅ ) f(\cdot) f()一定是可微的。也就是说:一个函数是凸函数,并不要求该函数一定可微
f ( ⋅ )  is Convex ⇔ f ( x 2 ) ≥ f ( x 1 ) + [ ∇ f ( x 1 ) ] T ⋅ ( x 2 − x 1 ) f(\cdot) \text{ is Convex} \Leftrightarrow f(x_2) \geq f(x_1) + [\nabla f(x_1)]^T \cdot (x_2-x_1) f() is Convexf(x2)f(x1)+[f(x1)]T(x2x1)
这是一个充分必要条件。可以在图像中看到这个现象:
凸函数的一阶条件示例

凸函数的梯度单调性

在函数 f ( ⋅ ) f(\cdot) f()可微的条件下, [ ∇ f ( x ) − ∇ f ( y ) ] [\nabla f(x) - \nabla f(y)] [f(x)f(y)] x − y x-y xy之间同号。即:
f ( ⋅ )  is Convex  ⇔ [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) ≥ 0 f(\cdot) \text{ is Convex } \Leftrightarrow [\nabla f(x) - \nabla f(y)]^T (x - y) \geq 0 f() is Convex [f(x)f(y)]T(xy)0

证明:充分性
如果 f ( ⋅ ) f(\cdot) f()可微的凸函数,根据凸函数的一阶条件,有:
{ f ( y ) ≥ f ( x ) + [ ∇ f ( x ) ] T ⋅ ( y − x ) f ( x ) ≥ f ( y ) + [ ∇ f ( y ) ] T ⋅ ( x − y ) \begin{cases} \begin{aligned} f(y) \geq f(x) + [\nabla f(x)]^T \cdot (y - x) \\ f(x) \geq f(y) + [\nabla f(y)]^T \cdot (x - y) \end{aligned} \end{cases} {f(y)f(x)+[f(x)]T(yx)f(x)f(y)+[f(y)]T(xy)
将上述式子相加,有:
[ ∇ f ( x ) − ∇ f ( y ) ] T ⋅ ( x − y ) ≥ 0 [\nabla f(x) - \nabla f(y)]^T \cdot (x - y) \geq 0 [f(x)f(y)]T(xy)0
证明:必要性
如果 f ( ⋅ ) f(\cdot) f()的梯度 ∇ f ( ⋅ ) \nabla f(\cdot) f()单调的,定义关于 t ∈ [ 0 , 1 ] t \in [0,1] t[0,1]的函数 G ( t ) \mathcal G(t) G(t)
G ( t ) = f [ x + t ⋅ ( y − x ) ] \mathcal G(t) = f[x + t \cdot (y - x)] G(t)=f[x+t(yx)]
对应 G ( t ) \mathcal G(t) G(t)的导数 G ′ ( t ) \mathcal G'(t) G(t)
G ′ ( t ) = [ ∇ f ( x + t ⋅ ( y − x ) ) ] T ⋅ ( y − x ) \mathcal G'(t) = [\nabla f(x + t \cdot (y-x))]^T \cdot (y-x) G(t)=[f(x+t(yx))]T(yx)
由于 G ′ ( t ) \mathcal G'(t) G(t) t ∈ [ 0 , 1 ] t \in [0,1] t[0,1]上连续,且:
[ ∇ f ( x ) − ∇ f ( y ) ] T ⋅ ( x − y ) ≥ 0 [\nabla f(x) - \nabla f(y)]^T \cdot (x - y) \geq 0 [f(x)f(y)]T(xy)0
从而有:
消了两个负号~
G ′ ( t ) ≥ G ′ ( 0 ) ⇐ { G ′ ( 1 ) − G ′ ( 0 ) = [ ∇ f ( y ) − ∇ f ( x ) ] T ⋅ ( y − x ) ≥ 0 G ′ ( 0 ) − G ′ ( 0 ) = 0 \mathcal G'(t) \geq \mathcal G'(0) \Leftarrow \begin{cases} \mathcal G'(1) - \mathcal G'(0) = [\nabla f(y) - \nabla f(x)]^T \cdot (y-x) \geq 0 \\ \mathcal G'(0) - \mathcal G'(0) = 0 \end{cases} G(t)G(0){G(1)G(0)=[f(y)f(x)]T(yx)0G(0)G(0)=0
最终有:
f ( y ) = G ( 1 ) = G ( 0 ) + ∫ 0 1 G ′ ( t ) d t ≥ G ( 0 ) + G ′ ( 0 ) = f ( x ) + [ ∇ f ( x ) ] T ( y − x ) f(y) = \mathcal G(1) = \mathcal G(0) + \int_0^1 \mathcal G'(t) dt \geq \mathcal G(0) + \mathcal G'(0) = f(x) + [\nabla f(x)]^T (y-x) f(y)=G(1)=G(0)+01G(t)dtG(0)+G(0)=f(x)+[f(x)]T(yx)
即: f ( ⋅ ) f(\cdot) f()为凸函数

凸函数的二阶条件

在函数 f ( ⋅ ) f(\cdot) f()二阶可微的条件下,说明关于 f ( ⋅ ) f(\cdot) f()二阶梯度 ∇ 2 f ( ⋅ ) \nabla^2 f(\cdot) 2f()存在,即对应的 Hessian Matrix \text{Hessian Matrix} Hessian Matrix存在。从而有该矩阵是一个半正定矩阵
简单注意一下,这里的 0 0 0指的是 0 0 0矩阵。
f ( ⋅ )  is Convex  ⇔ ∇ 2 f ( x ) ≽ 0 f(\cdot) \text{ is Convex } \Leftrightarrow \nabla^2 f(x) \succcurlyeq 0 f() is Convex 2f(x)0

强凸函数

强凸函数的定义

关于强凸函数的定义表示如下: f ( ⋅ ) f(\cdot) f()为定义在空间 I \mathcal I I上的函数,若存在 m > 0 m>0 m>0,使其对 I \mathcal I I上的任意两点 x 1 , x 2 x_1,x_2 x1,x2任意实数 λ ∈ ( 0 , 1 ) \lambda \in (0,1) λ(0,1)总有
λ ⋅ f ( x 1 ) + ( 1 − λ ) ⋅ f ( x 2 ) ≥ f [ θ ⋅ x 1 + ( 1 − θ ) ⋅ x 2 ] + m 2 ⋅ θ ( 1 − θ ) ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ 2 \lambda\cdot f(x_1) + (1 - \lambda) \cdot f(x_2) \geq f[\theta \cdot x_1 + (1 - \theta) \cdot x_2] + \frac{m}{2} \cdot \theta(1 - \theta) \cdot ||x_1 -x _2||^2 λf(x1)+(1λ)f(x2)f[θx1+(1θ)x2]+2mθ(1θ)∣∣x1x22
相比于凸函数的定义,强凸函数明显多了一个部分: m 2 ⋅ θ ( 1 − θ ) ⋅ ∣ ∣ x 1 − x 2 ∣ ∣ 2 \begin{aligned}\frac{m}{2} \cdot \theta(1 - \theta) \cdot ||x_1 -x _2||^2\end{aligned} 2mθ(1θ)∣∣x1x22。并且这个部分一定是正数。这相比凸函数仅仅 ≥ 0 \geq 0 0的约束要更强。
也被称作 m m m-强凸,其与凸函数定义的本质区别是相比凸函数多了一个 > 0 >0 >0下界的保证。

强凸函数的判定条件

凸函数的判定条件相类似,关于强凸的判定条件同样没有直接对 f ( ⋅ ) f(\cdot) f()进行描述。对应条件表示如下:

  • 定义 G ( x ) ≜ f ( x ) − 1 2 m ⋅ ∣ ∣ x ∣ ∣ 2 \begin{aligned}\mathcal G(x) \triangleq f(x) - \frac{1}{2} m \cdot ||x||^2\end{aligned} G(x)f(x)21m∣∣x2,有:
    f ( ⋅ )  is m-Strong Convex  ⇔ G ( x )  is Convex f(\cdot) \text{ is m-Strong Convex } \Leftrightarrow \mathcal G(x) \text{ is Convex} f() is m-Strong Convex G(x) is Convex

强凸函数的一阶条件

关于强凸函数的一阶条件是在对应凸函数一阶条件的基础上,加入一个二次下界
f ( ⋅ ) f(\cdot) f()梯度满足利普希兹连续对应的二次上界引理不同:
∇ f ( ⋅ )  Lipschitz ⇔ f ( x 2 ) ≤ f ( x 1 ) + [ ∇ f ( x 1 ) ] T ( x 2 − x 1 ) + L 2 ∣ ∣ x 2 − x 1 ∣ ∣ 2 \nabla f(\cdot) \text{ Lipschitz} \Leftrightarrow f(x_2) \leq f(x_1) + [\nabla f(x_1)]^T (x_2 - x_1) + \frac{\mathcal L}{2}||x_2 - x_1||^2 f() Lipschitzf(x2)f(x1)+[f(x1)]T(x2x1)+2L∣∣x2x12
利普希兹连续强调的是限制梯度变化量的上界;而 m m m-强凸强调一个 > 0 >0 >0的二次下界。
f ( ⋅ )  is m-Strong Convex  ⇔ f ( x 2 ) ≥ f ( x 1 ) + [ ∇ f ( x 1 ) ] T ( x 2 − x 1 ) + m 2 ∣ ∣ x 2 − x 1 ∣ ∣ 2 f(\cdot) \text{ is m-Strong Convex } \Leftrightarrow f(x_2) \geq f(x_1) + [\nabla f(x_1)]^T (x_2-x_1) + \frac{m}{2}||x_2 - x_1||^2 f() is m-Strong Convex f(x2)f(x1)+[f(x1)]T(x2x1)+2m∣∣x2x12

强凸函数的梯度单调性

凸函数的梯度单调性基本类似,只不过下界由 0 0 0换成了:
证明过程略。
f ( ⋅ )  is m-Strong Convex  ⇔ [ ∇ f ( x ) − ∇ f ( y ) ] T ( x − y ) ≥ m ⋅ ∣ ∣ x − y ∣ ∣ 2 f(\cdot) \text{ is m-Strong Convex } \Leftrightarrow [\nabla f(x) - \nabla f(y)]^T (x - y) \geq m \cdot ||x - y||^2 f() is m-Strong Convex [f(x)f(y)]T(xy)m∣∣xy2

强突函数的二阶条件

f ( ⋅ ) f(\cdot) f()二阶可微的条件下,有:
其中 I \mathcal I I指单位矩阵。
f ( ⋅ )  is m-Strong Convex  ⇔ ∇ 2 f ( x ) ≽ m ⋅ I f(\cdot) \text{ is m-Strong Convex } \Leftrightarrow \nabla^2 f(x) \succcurlyeq m \cdot \mathcal I f() is m-Strong Convex 2f(x)mI

相关参考:
【优化算法】梯度下降法-基础补充-凸函数vs强凸函数vs严格凸函数(上)
【优化算法】梯度下降法-基础补充-凸函数vs强凸函数vs严格凸函数(下)

工具箱:
红色楷体

蓝色楷体

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/853863.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

java.sql.SQLFeatureNotSupportedException 问题及可能的解决方法

目录 问题 分析: 解决方法 问题 java.sql.SQLFeatureNotSupportedException 分析: 可能是你的 druid的maven依赖版本太低了,我的以前是1.1.16,就出现了异常! 解决方法 把druid的maven依赖版本调高! 运…

tui.calender日历在vue中的使用1.0

官网:https://ui.toast.com/tui-calendar github:https://github.com/nhn/tui.calendar/tree/main 月、周、日视图都有,拖拽也比较方便,但是自己用起来比较费劲,参考文档写得不全,做个记录日后方便参考&…

考研408 | 【计算机网络】 数据链路层

导图: 数据链路层概念: 结点:主机、路由器 链路:网络中两个结点之间的物理通道,链路的传输介质主要有双绞线、光纤和微波。分为有线链路、无线链路。 数据链路:网络中两个结点之间的逻辑通道&#xff0…

idea中提示Unsupported characters for the charset ‘ISO-8859-1‘

application.properties中文注释拉黄线 ,提示Unsupported characters for the charset ISO-8859-1 解决办法: 注意: 改完之后之前输入的中文就变成“ ???”了,建议备份一下 1、打开setti…

并发——什么是线程死锁?如何避免死锁?

文章目录 1. 认识线程死锁2. 如何避免线程死锁? 1. 认识线程死锁 线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。 如下图所示&#xff…

软件验收测试包括几种类型?验收测试报告有什么好处?

在软件开发中,验收测试是软件项目在开发完成后进行的最后一项测试工作。它是确认软件是否满足预期要求,并准备将软件交付用户的核心环节,它可以确保软件的质量和功能符合用户的需求和期望。 一、软件验收测试的类型 软件验收测试可以分为多…

网络安全【黑客】面试题汇总

前言 一眨眼2023年已经过去一大半,不知道大家有没有找到心仪的工作。作为一个安全老鸟,工作这么多年,面试过很多人也出过很多面试题目,也在网上收集了各类关于渗透面试题目,里面有我对一些问题的见解,希望…

C++结构体部分显式构造导致编译异常分析

今天调试了一段代码如下 #include <iostream> #include <shared_mutex>#define SECT_NUM 2 #define DI_HIGH_PERM 2 #define DI_READ 1 #define DI_WRITE 2 #define FMT_BIN 1#define USER_PATH "d:\\fafiles\\dbtest\\"typedef unsigned long DW…

UE4 像素流 学习笔记

使用场景&#xff1a; 1、登录服务器&#xff0c;服务器上安装node.js Download | Node.js (nodejs.org) 点击该网址 点击Windows Installer 2、登录服务器&#xff0c;拷贝本地UE Pixel Streaming包到服务器 启用插件后重启该项目 3、登录服务器&#xff0c;修改\Sample\P…

MobXterm设置快捷键ctrl+v

问题&#xff1a; MobXterm是一个很好的ssh软件&#xff0c;粘贴按键反人性Shift Insert(Ins)&#xff0c;大部分人还是习惯CtrlV 原因&#xff1a;替换快捷键设置 CtrlV 方法&#xff1a;菜单setting->keybroad shotcuts->Paste in termainal

Hello,SpringBoot!

一、回顾什么是Spring Spring是一个开源框架&#xff0c;2003 年兴起的一个轻量级的Java 开发框架&#xff0c;作者&#xff1a;Rod Johnson Spring是为了解决企业级应用开发的复杂性而创建的&#xff0c;简化开发。 Spring是如何简化Java开发的 为了降低Java开发的复杂性…

金蝶,「起舞」在大模型时代

在过去的几年时间里&#xff0c;基于EBC的平台能力&#xff0c;金蝶已经走出了一个新的进化之路&#xff0c;这条路是对自身产品竞争力的重新构建&#xff0c;也更是对企业数字化转型需求的更大程度满足。 如今&#xff0c;苍穹GPT大模型更是让这种竞争力和服务力更向前一步。…

leetcode 881. 救生艇(java)

救生艇 leetcode 881. 救生艇题目描述代码 双指针算法 leetcode 881. 救生艇 难度 - 中等 leetcode 881. 救生艇 题目描述 给定数组 people 。people[i]表示第 i 个人的体重 &#xff0c;船的数量不限&#xff0c;每艘船可以承载的最大重量为 limit。 每艘船最多可同时载两人&a…

【Matlab】极限学习机-遗传算法(ELM-GA)函数极值寻优——非线性函数求极值

往期博客&#x1f449; 【Matlab】BP神经网络遗传算法(BP-GA)函数极值寻优——非线性函数求极值 【Matlab】GRNN神经网络遗传算法(GRNN-GA)函数极值寻优——非线性函数求极值 【Matlab】RBF神经网络遗传算法(RBF-GA)函数极值寻优——非线性函数求极值 【Matlab】Elman神经网络遗…

英国选举委员会泄露选民信息

The Hacker News 网站披露&#xff0c;2014 年至 2022 年间&#xff0c;英国选举委员会遭遇网络攻击&#xff0c;泄露大量选民的个人信息&#xff0c;目前委员会已经通知英国信息专员办公室。 英国选举委员会在推特上表示 2021 年 8 月&#xff0c;网络攻击者利用某安全漏洞&am…

MySQL索引1——索引基本概念与索引结构(B树、R树、Hash等)

目录 索引(INDEX)基本概念 索引结构分类 BTree树索引结构 Hash索引结构 Full-Text索引 R-Tree索引 索引(INDEX)基本概念 什么是索引 索引是帮助MySQL高效获取数据的有序数据结构 为数据库表中的某些列创建索引&#xff0c;就是对数据库表中某些列的值通过不同的数据结…

使用Flask.Request的方法和属性,获取get和post请求参数(二)

1、Flask中的request 在Python发送Post、Get等请求时&#xff0c;我们使用到requests库。Flask中有一个request库&#xff0c;有其特有的一些方法和属性&#xff0c;注意跟requests不是同一个。 2、Post请求&#xff1a;request.get_data() 用于服务端获取客户端请求数据。注…

JVM:运行时数据区域(白话文)

最近有时间在看一本<深入了解Java虚拟机>的书籍&#xff0c;这本书是一个中国人&#xff0c;名叫周志明的人写的。相比于其他翻译过来的技术书籍&#xff0c;这本书还是挺通俗易懂的。先前有和彬哥在聊&#xff0c;他说如果是自己一个人看的话会很枯燥&#xff0c;很难坚…

智慧城市美术效果Unity实现笔记流程

智慧城市美术效果Unity实现笔记流程&#xff1a; 参考 对标 效果图&#xff1a; 写实类-参考图&#xff1a; (以上均为网络搜索效果,有落叶大师&#xff0c;以及其他优秀开发者效果图参考) 未来类-参考图&#xff1a; 如上图所示,智慧城市基本分为 这两个大类&#xff0c;偏写…

辛苦了,你身边有一批优秀下属

领导者不是全知全能的&#xff0c;假如领导者啥都会&#xff0c;还要下属有何用&#xff1f;下属还有用武之地&#xff1f; 保罗赫塞说过&#xff1a;“领导力是通过与他人合作或通过他人协作实现组织目标的过程。” 一、日行一善 我们无法靠自己完成复杂的事情&#xff0c;…